{"title":"评估根对温度的反应","authors":"Sanghwa Lee, Wolfgang Busch","doi":"10.1007/978-1-0716-3814-9_4","DOIUrl":null,"url":null,"abstract":"<p><p>Due to global warming, it is important to understand how plants respond to high ambient temperature. Plant growth responses to high ambient temperature are termed thermomophogenesis and have been explored for more than a decade. However, this was mostly focused on the above-ground part of plants, the shoot. In this chapter, we describe a simple method to assess root growth phenotype to high ambient temperatures. In principle, this protocol can be applied for any other treatments to test overall seedling growth.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2795 ","pages":"37-42"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Temperature Responses in Roots.\",\"authors\":\"Sanghwa Lee, Wolfgang Busch\",\"doi\":\"10.1007/978-1-0716-3814-9_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to global warming, it is important to understand how plants respond to high ambient temperature. Plant growth responses to high ambient temperature are termed thermomophogenesis and have been explored for more than a decade. However, this was mostly focused on the above-ground part of plants, the shoot. In this chapter, we describe a simple method to assess root growth phenotype to high ambient temperatures. In principle, this protocol can be applied for any other treatments to test overall seedling growth.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2795 \",\"pages\":\"37-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-3814-9_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3814-9_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Due to global warming, it is important to understand how plants respond to high ambient temperature. Plant growth responses to high ambient temperature are termed thermomophogenesis and have been explored for more than a decade. However, this was mostly focused on the above-ground part of plants, the shoot. In this chapter, we describe a simple method to assess root growth phenotype to high ambient temperatures. In principle, this protocol can be applied for any other treatments to test overall seedling growth.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.