基于深度学习的多类别阿尔茨海默病数据分类。

Current neurobiology Pub Date : 2019-10-01
David S Cohen, Kristy A Carpenter, Juliet T Jarrell, Xudong Huang
{"title":"基于深度学习的多类别阿尔茨海默病数据分类。","authors":"David S Cohen, Kristy A Carpenter, Juliet T Jarrell, Xudong Huang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>It is urgent to find the appropriate technology for the early detection of Alzheimer's disease (AD) due to the unknown AD etiopathologies that bring about serious social problems. Early detection of mild cognitive impairment (MCI) has pivotal importance in delaying or preventing the AD onset. Herein, we utilize deep learning (DL) techniques for the purpose of multiclass classification between normal control, MCI, and AD subjects. We used multi-categorical data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) including brain imaging measurements, cognitive test results, cerebrospinal fluid measures, ApoE4 status, and age. We achieved an overall accuracy of 87.197% for our artificial neural network classifier and a similar overall accuracy of 88.275% for our 1D convolutional neural network classifier. We conclude that DL-based techniques are powerful tools in analyzing ADNI data although further method refinements are needed.</p>","PeriodicalId":89670,"journal":{"name":"Current neurobiology","volume":"10 3","pages":"141-147"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889824/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based classification of multi-categorical Alzheimer's disease data.\",\"authors\":\"David S Cohen, Kristy A Carpenter, Juliet T Jarrell, Xudong Huang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is urgent to find the appropriate technology for the early detection of Alzheimer's disease (AD) due to the unknown AD etiopathologies that bring about serious social problems. Early detection of mild cognitive impairment (MCI) has pivotal importance in delaying or preventing the AD onset. Herein, we utilize deep learning (DL) techniques for the purpose of multiclass classification between normal control, MCI, and AD subjects. We used multi-categorical data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) including brain imaging measurements, cognitive test results, cerebrospinal fluid measures, ApoE4 status, and age. We achieved an overall accuracy of 87.197% for our artificial neural network classifier and a similar overall accuracy of 88.275% for our 1D convolutional neural network classifier. We conclude that DL-based techniques are powerful tools in analyzing ADNI data although further method refinements are needed.</p>\",\"PeriodicalId\":89670,\"journal\":{\"name\":\"Current neurobiology\",\"volume\":\"10 3\",\"pages\":\"141-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889824/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurobiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于阿尔茨海默病(AD)病因不明,会带来严重的社会问题,因此迫切需要找到合适的技术来早期检测阿尔茨海默病(AD)。轻度认知障碍(MCI)的早期检测对于延缓或预防阿尔茨海默病的发生具有举足轻重的意义。在此,我们利用深度学习(DL)技术对正常对照组、MCI 和 AD 受试者进行多类分类。我们使用了阿尔茨海默病神经影像倡议(ADNI)的多分类数据,包括脑成像测量、认知测试结果、脑脊液测量、载脂蛋白E4状态和年龄。我们的人工神经网络分类器的总体准确率达到了 87.197%,一维卷积神经网络分类器的总体准确率也达到了 88.275%。我们的结论是,基于 DL 的技术是分析 ADNI 数据的强大工具,尽管还需要进一步改进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-based classification of multi-categorical Alzheimer's disease data.

It is urgent to find the appropriate technology for the early detection of Alzheimer's disease (AD) due to the unknown AD etiopathologies that bring about serious social problems. Early detection of mild cognitive impairment (MCI) has pivotal importance in delaying or preventing the AD onset. Herein, we utilize deep learning (DL) techniques for the purpose of multiclass classification between normal control, MCI, and AD subjects. We used multi-categorical data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) including brain imaging measurements, cognitive test results, cerebrospinal fluid measures, ApoE4 status, and age. We achieved an overall accuracy of 87.197% for our artificial neural network classifier and a similar overall accuracy of 88.275% for our 1D convolutional neural network classifier. We conclude that DL-based techniques are powerful tools in analyzing ADNI data although further method refinements are needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Why do People have Seizures and Epilepsy: What is the Cause? Vision Neurobiology: How we know it the Moment When we see it An Overview of Behavioral Effects and Neurobiological Mechanisms: Individual Choices Herbal Medicine Effectiveness on Neurological Disorders Neural damage and neuroprotection with glaucoma development in aniridia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1