通过恢复受损的线粒体,树胶糖提高了 AβarcDrosophila 的运动能力。

IF 1.8 4区 医学 Q4 NEUROSCIENCES Translational Neuroscience Pub Date : 2024-04-10 eCollection Date: 2024-01-01 DOI:10.1515/tnsci-2022-0338
Liangxian Li, Zhiheng Huang, Mingli Wu, Xia Li, Bo Xiao, Dong Yao, Biwen Mo
{"title":"通过恢复受损的线粒体,树胶糖提高了 AβarcDrosophila 的运动能力。","authors":"Liangxian Li, Zhiheng Huang, Mingli Wu, Xia Li, Bo Xiao, Dong Yao, Biwen Mo","doi":"10.1515/tnsci-2022-0338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The deposition of Aβ<sub>42</sub> has been regarded as one of the important pathological features of Alzheimer's disease (AD). However, drug development for Aβ<sub>42</sub> toxicity has been progressed slowly.</p><p><strong>Objective: </strong>Our aim was to introduce the effect and related mechanism of trehalose on an Aβ<sub>arc</sub> (arctic mutant Aβ<sub>42</sub>) <i>Drosophila</i> AD model.</p><p><strong>Methods: </strong>The human Aβ<sub>arc</sub> was expressed in <i>Drosophila</i> to construct the AD model. Trehalose was added to the culture vial. The movement ability was determined by detecting climbing ability and flight ability. Enzyme-linked immunosorbent assay was used to detect the levels of Aβ<sub>arc</sub>, ATP, and lactate. Electron microscopy assay, mitochondrial membrane potential assay, and mitochondrial respiration assay were used to assess the mitochondrial structure and function.</p><p><strong>Results: </strong>Trehalose strongly improved the movement ability of Aβ<sub>arc</sub> <i>Drosophila</i> in a concentration gradient-dependent manner. Furthermore, trehalose increased the content of ATP and decreased the content of Aβ<sub>arc</sub> and lactate both in the brain and thorax of Aβ<sub>arc</sub> <i>Drosophila</i>. More importantly, the mitochondrial structure and function were greatly improved by trehalose treatment in Aβ<sub>arc</sub> <i>Drosophila</i>.</p><p><strong>Conclusion: </strong>Trehalose improves movement ability at least partly by reducing the Aβ<sub>arc</sub> level and restoring the mitochondrial structure and function in Aβ<sub>arc</sub> <i>Drosophila</i>.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017185/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trehalose improves the movement ability of Aβ<sub>arc</sub><i>Drosophila</i> by restoring the damaged mitochondria.\",\"authors\":\"Liangxian Li, Zhiheng Huang, Mingli Wu, Xia Li, Bo Xiao, Dong Yao, Biwen Mo\",\"doi\":\"10.1515/tnsci-2022-0338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The deposition of Aβ<sub>42</sub> has been regarded as one of the important pathological features of Alzheimer's disease (AD). However, drug development for Aβ<sub>42</sub> toxicity has been progressed slowly.</p><p><strong>Objective: </strong>Our aim was to introduce the effect and related mechanism of trehalose on an Aβ<sub>arc</sub> (arctic mutant Aβ<sub>42</sub>) <i>Drosophila</i> AD model.</p><p><strong>Methods: </strong>The human Aβ<sub>arc</sub> was expressed in <i>Drosophila</i> to construct the AD model. Trehalose was added to the culture vial. The movement ability was determined by detecting climbing ability and flight ability. Enzyme-linked immunosorbent assay was used to detect the levels of Aβ<sub>arc</sub>, ATP, and lactate. Electron microscopy assay, mitochondrial membrane potential assay, and mitochondrial respiration assay were used to assess the mitochondrial structure and function.</p><p><strong>Results: </strong>Trehalose strongly improved the movement ability of Aβ<sub>arc</sub> <i>Drosophila</i> in a concentration gradient-dependent manner. Furthermore, trehalose increased the content of ATP and decreased the content of Aβ<sub>arc</sub> and lactate both in the brain and thorax of Aβ<sub>arc</sub> <i>Drosophila</i>. More importantly, the mitochondrial structure and function were greatly improved by trehalose treatment in Aβ<sub>arc</sub> <i>Drosophila</i>.</p><p><strong>Conclusion: </strong>Trehalose improves movement ability at least partly by reducing the Aβ<sub>arc</sub> level and restoring the mitochondrial structure and function in Aβ<sub>arc</sub> <i>Drosophila</i>.</p>\",\"PeriodicalId\":23227,\"journal\":{\"name\":\"Translational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/tnsci-2022-0338\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:Aβ42 的沉积一直被认为是阿尔茨海默病(AD)的重要病理特征之一。然而,针对 Aβ42 毒性的药物开发进展缓慢:我们的目的是介绍三卤糖对 Aβarc(北极突变体 Aβ42)果蝇 AD 模型的影响及相关机制:方法:在果蝇中表达人Aβarc,构建AD模型。方法:在果蝇体内表达人 Aβarc 以构建 AD 模型。通过检测爬行能力和飞行能力来确定果蝇的运动能力。酶联免疫吸附试验检测 Aβarc、ATP 和乳酸的水平。电镜检测、线粒体膜电位检测和线粒体呼吸检测用于评估线粒体结构和功能:结果:在浓度梯度依赖性作用下,曲哈洛糖能显著提高 Aβarc 果蝇的运动能力。此外,在 Aβarc 果蝇的大脑和胸部,三卤糖都能增加 ATP 的含量,降低 Aβarc 和乳酸的含量。更重要的是,经曲阿露糖处理的 Aβarc 果蝇的线粒体结构和功能得到了极大改善:结论:通过降低 Aβarc 水平和恢复 Aβarc 果蝇的线粒体结构和功能,树胶糖至少部分改善了果蝇的运动能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trehalose improves the movement ability of AβarcDrosophila by restoring the damaged mitochondria.

Background: The deposition of Aβ42 has been regarded as one of the important pathological features of Alzheimer's disease (AD). However, drug development for Aβ42 toxicity has been progressed slowly.

Objective: Our aim was to introduce the effect and related mechanism of trehalose on an Aβarc (arctic mutant Aβ42) Drosophila AD model.

Methods: The human Aβarc was expressed in Drosophila to construct the AD model. Trehalose was added to the culture vial. The movement ability was determined by detecting climbing ability and flight ability. Enzyme-linked immunosorbent assay was used to detect the levels of Aβarc, ATP, and lactate. Electron microscopy assay, mitochondrial membrane potential assay, and mitochondrial respiration assay were used to assess the mitochondrial structure and function.

Results: Trehalose strongly improved the movement ability of Aβarc Drosophila in a concentration gradient-dependent manner. Furthermore, trehalose increased the content of ATP and decreased the content of Aβarc and lactate both in the brain and thorax of Aβarc Drosophila. More importantly, the mitochondrial structure and function were greatly improved by trehalose treatment in Aβarc Drosophila.

Conclusion: Trehalose improves movement ability at least partly by reducing the Aβarc level and restoring the mitochondrial structure and function in Aβarc Drosophila.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
4.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.
期刊最新文献
Activating α7nAChR suppresses systemic inflammation by mitigating neuroinflammation of the medullary visceral zone in sepsis in a rat model. Amelioration of behavioral and histological impairments in somatosensory cortex injury rats by limbal mesenchymal stem cell transplantation. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Corrigendum to "The ACE2/Ang-(1-7)/MasR axis alleviates brain injury after cardiopulmonary resuscitation in rabbits by activating PI3K/Akt signaling". Acute ischemic STROKE - from laboratory to the Patient's BED (STROKELABED): A translational approach to reperfusion injury. Study Protocol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1