Shahroz Rahman, Abdul Rehman Ikram, Farrukh Azeem, Muhammad Tahir Ul Qamar, Tayyaba Shaheen, Mehboob-Ur-Rahman
{"title":"利用 CRISPR-Cas9 进行精准基因组编辑。","authors":"Shahroz Rahman, Abdul Rehman Ikram, Farrukh Azeem, Muhammad Tahir Ul Qamar, Tayyaba Shaheen, Mehboob-Ur-Rahman","doi":"10.1007/978-1-0716-3782-1_21","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR/Cas9 system is a revolutionary technology for genome editing that allows for precise and efficient modifications of DNA sequences. The system is composed of two main components, the Cas9 enzyme and a guide RNA (gRNA). The gRNA is designed to specifically target a desired DNA sequence, while the Cas9 enzyme acts as molecular scissors to cut the DNA at that specific location. The cell then repairs the digested DNA, either through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in either indels or precise modifications of DNA sequences with broad implications in biotechnology, agriculture, and medicine. This chapter provides a practical approach for utilizing CRISPR/Cas9 in precise genome editing, including identifying the target gene sequence, designing gRNA and protein (Cas9), and delivering the CRISPR components to target cells.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2788 ","pages":"355-372"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision Genome Editing with CRISPR-Cas9.\",\"authors\":\"Shahroz Rahman, Abdul Rehman Ikram, Farrukh Azeem, Muhammad Tahir Ul Qamar, Tayyaba Shaheen, Mehboob-Ur-Rahman\",\"doi\":\"10.1007/978-1-0716-3782-1_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The CRISPR/Cas9 system is a revolutionary technology for genome editing that allows for precise and efficient modifications of DNA sequences. The system is composed of two main components, the Cas9 enzyme and a guide RNA (gRNA). The gRNA is designed to specifically target a desired DNA sequence, while the Cas9 enzyme acts as molecular scissors to cut the DNA at that specific location. The cell then repairs the digested DNA, either through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in either indels or precise modifications of DNA sequences with broad implications in biotechnology, agriculture, and medicine. This chapter provides a practical approach for utilizing CRISPR/Cas9 in precise genome editing, including identifying the target gene sequence, designing gRNA and protein (Cas9), and delivering the CRISPR components to target cells.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\"2788 \",\"pages\":\"355-372\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-0716-3782-1_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3782-1_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
CRISPR/Cas9 系统是一种革命性的基因组编辑技术,可对 DNA 序列进行精确、高效的修改。该系统由 Cas9 酶和引导 RNA(gRNA)两大部分组成。gRNA 专为所需的 DNA 序列而设计,而 Cas9 酶则像分子剪刀一样在特定位置剪切 DNA。然后,细胞通过非同源末端连接(NHEJ)或同源定向修复(HDR)来修复被消化的 DNA,从而产生嵌合或精确修饰的 DNA 序列,对生物技术、农业和医学产生广泛影响。本章介绍了利用 CRISPR/Cas9 进行精确基因组编辑的实用方法,包括确定目标基因序列、设计 gRNA 和蛋白质 (Cas9),以及将 CRISPR 组件输送到目标细胞。
The CRISPR/Cas9 system is a revolutionary technology for genome editing that allows for precise and efficient modifications of DNA sequences. The system is composed of two main components, the Cas9 enzyme and a guide RNA (gRNA). The gRNA is designed to specifically target a desired DNA sequence, while the Cas9 enzyme acts as molecular scissors to cut the DNA at that specific location. The cell then repairs the digested DNA, either through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in either indels or precise modifications of DNA sequences with broad implications in biotechnology, agriculture, and medicine. This chapter provides a practical approach for utilizing CRISPR/Cas9 in precise genome editing, including identifying the target gene sequence, designing gRNA and protein (Cas9), and delivering the CRISPR components to target cells.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.