YiNi Wang, XinYu Shi, YaPing Yin, Fei Yang, YiNan Zhang, Xin He, Da Wen, Bai-Xiang Li, Kun Ma
{"title":"神经炎症与帕金森病之间的关系:孟德尔随机综合研究","authors":"YiNi Wang, XinYu Shi, YaPing Yin, Fei Yang, YiNan Zhang, Xin He, Da Wen, Bai-Xiang Li, Kun Ma","doi":"10.1007/s12035-024-04197-2","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the study is to determine the causal relationship and potential mechanisms between Parkinson's disease (PD) and neuroinflammatory and neurotoxic mediators. We conducted two-sample Mendelian randomization (2SMR) study and multivariable Mendelian randomization (MVMR) analysis to investigate the causality between PD and neuroinflammatory and neurotoxic mediators. The mediation analysis with MR was also conducted to determine the potential mediating effect of neuroinflammatory and neurotoxic mediators between asthma and PD. Genetically predicted levels of nine neuroinflammation were associated with changes in PD risk. The associations of PD with CCL24, galectin-3 levels, haptoglobin, and Holo-Transcobalamin-2 remained significant in multivariable analyses. The mediation analysis with MR revealed that asthma affects PD through CCL24 and galectin-3. The results showed neuroinflammation could affect the pathogenesis of PD. In the combined analysis of these nine variables, CCL24, galectin-3 levels, HP, and Holo-Transcobalamin-2 alone were found to be significant. Asthma plays an intermediary role through CCL24 and galectin-3 levels.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10216-10226"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association Between Neuroinflammation and Parkinson's Disease: A Comprehensive Mendelian Randomization Study.\",\"authors\":\"YiNi Wang, XinYu Shi, YaPing Yin, Fei Yang, YiNan Zhang, Xin He, Da Wen, Bai-Xiang Li, Kun Ma\",\"doi\":\"10.1007/s12035-024-04197-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of the study is to determine the causal relationship and potential mechanisms between Parkinson's disease (PD) and neuroinflammatory and neurotoxic mediators. We conducted two-sample Mendelian randomization (2SMR) study and multivariable Mendelian randomization (MVMR) analysis to investigate the causality between PD and neuroinflammatory and neurotoxic mediators. The mediation analysis with MR was also conducted to determine the potential mediating effect of neuroinflammatory and neurotoxic mediators between asthma and PD. Genetically predicted levels of nine neuroinflammation were associated with changes in PD risk. The associations of PD with CCL24, galectin-3 levels, haptoglobin, and Holo-Transcobalamin-2 remained significant in multivariable analyses. The mediation analysis with MR revealed that asthma affects PD through CCL24 and galectin-3. The results showed neuroinflammation could affect the pathogenesis of PD. In the combined analysis of these nine variables, CCL24, galectin-3 levels, HP, and Holo-Transcobalamin-2 alone were found to be significant. Asthma plays an intermediary role through CCL24 and galectin-3 levels.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"10216-10226\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04197-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04197-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Association Between Neuroinflammation and Parkinson's Disease: A Comprehensive Mendelian Randomization Study.
The objective of the study is to determine the causal relationship and potential mechanisms between Parkinson's disease (PD) and neuroinflammatory and neurotoxic mediators. We conducted two-sample Mendelian randomization (2SMR) study and multivariable Mendelian randomization (MVMR) analysis to investigate the causality between PD and neuroinflammatory and neurotoxic mediators. The mediation analysis with MR was also conducted to determine the potential mediating effect of neuroinflammatory and neurotoxic mediators between asthma and PD. Genetically predicted levels of nine neuroinflammation were associated with changes in PD risk. The associations of PD with CCL24, galectin-3 levels, haptoglobin, and Holo-Transcobalamin-2 remained significant in multivariable analyses. The mediation analysis with MR revealed that asthma affects PD through CCL24 and galectin-3. The results showed neuroinflammation could affect the pathogenesis of PD. In the combined analysis of these nine variables, CCL24, galectin-3 levels, HP, and Holo-Transcobalamin-2 alone were found to be significant. Asthma plays an intermediary role through CCL24 and galectin-3 levels.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.