在受控环境中,对确定的细胞周期阶段进行光镜和电子显微镜的相关观察。

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Methods in cell biology Pub Date : 2024-01-01 Epub Date: 2024-03-26 DOI:10.1016/bs.mcb.2024.02.025
Helena Bragulat-Teixidor, Shotaro Otsuka
{"title":"在受控环境中,对确定的细胞周期阶段进行光镜和电子显微镜的相关观察。","authors":"Helena Bragulat-Teixidor, Shotaro Otsuka","doi":"10.1016/bs.mcb.2024.02.025","DOIUrl":null,"url":null,"abstract":"<p><p>Cells are dynamic machines that continuously change their architecture to adapt and respond to extracellular and intracellular stimuli. Deciphering dynamic processes with nanometer-scale resolution inside cells is critical for mechanistic understanding. Here, we present a protocol that enables the in situ study of dynamic changes in intracellular structures under close-to-native conditions at high spatiotemporal resolution. Importantly, the cells are grown, transported, and imaged in a chamber in which environmental conditions such as temperature and gas (e.g., carbon dioxide or oxygen) concentration can be controlled. We demonstrate this protocol to quantify ultrastructural changes that occur during the cell cycle of cultured mammalian cells. The environment control system opens up the possibility of applying this method to primary cells, tissues, and organoids by adjusting environmental conditions.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlative light and electron microscopy at defined cell cycle stages in a controlled environment.\",\"authors\":\"Helena Bragulat-Teixidor, Shotaro Otsuka\",\"doi\":\"10.1016/bs.mcb.2024.02.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells are dynamic machines that continuously change their architecture to adapt and respond to extracellular and intracellular stimuli. Deciphering dynamic processes with nanometer-scale resolution inside cells is critical for mechanistic understanding. Here, we present a protocol that enables the in situ study of dynamic changes in intracellular structures under close-to-native conditions at high spatiotemporal resolution. Importantly, the cells are grown, transported, and imaged in a chamber in which environmental conditions such as temperature and gas (e.g., carbon dioxide or oxygen) concentration can be controlled. We demonstrate this protocol to quantify ultrastructural changes that occur during the cell cycle of cultured mammalian cells. The environment control system opens up the possibility of applying this method to primary cells, tissues, and organoids by adjusting environmental conditions.</p>\",\"PeriodicalId\":18437,\"journal\":{\"name\":\"Methods in cell biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mcb.2024.02.025\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2024.02.025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

细胞是一种动态机器,不断改变其结构以适应和响应细胞外和细胞内的刺激。以纳米级的分辨率解读细胞内的动态过程对于理解机理至关重要。在这里,我们提出了一种方案,能够在接近原生的条件下,以高时空分辨率原位研究细胞内结构的动态变化。重要的是,细胞是在一个可以控制温度和气体(如二氧化碳或氧气)浓度等环境条件的箱体内生长、运输和成像的。我们展示了这一方案,用于量化培养的哺乳动物细胞在细胞周期中发生的超微结构变化。环境控制系统通过调整环境条件,为将这种方法应用于原代细胞、组织和器官组织提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlative light and electron microscopy at defined cell cycle stages in a controlled environment.

Cells are dynamic machines that continuously change their architecture to adapt and respond to extracellular and intracellular stimuli. Deciphering dynamic processes with nanometer-scale resolution inside cells is critical for mechanistic understanding. Here, we present a protocol that enables the in situ study of dynamic changes in intracellular structures under close-to-native conditions at high spatiotemporal resolution. Importantly, the cells are grown, transported, and imaged in a chamber in which environmental conditions such as temperature and gas (e.g., carbon dioxide or oxygen) concentration can be controlled. We demonstrate this protocol to quantify ultrastructural changes that occur during the cell cycle of cultured mammalian cells. The environment control system opens up the possibility of applying this method to primary cells, tissues, and organoids by adjusting environmental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
期刊最新文献
Assessing chronological aging in Saccharomyces cerevisiae. Assessing microbiota composition in the context of aging. Assessing polyglutamine tract aggregation in the nematode Caenorhabditis elegans. Assessment of cell cycle progression and mitotic slippage by videomicroscopy. Cellular senescence and aging at the crossroad between immunity and cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1