{"title":"研究氟化物结合、选择性和跨膜运输的计算方法。","authors":"Kira R Mills, Hedieh Torabifard","doi":"10.1016/bs.mie.2024.01.006","DOIUrl":null,"url":null,"abstract":"<p><p>The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F<sup>-</sup>) exporters: the CLC<sup>F</sup> F<sup>-</sup>/H<sup>+</sup> antiporter and the Fluc F<sup>-</sup> channel. The CLC<sup>F</sup> antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLC<sup>F</sup> transport process, including its selectivity for F<sup>-</sup> over HF. In contrast, the Fluc F<sup>-</sup> channel presents a novel architecture as a dual topology dimer, featuring two pores for F<sup>-</sup> export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F<sup>-</sup> export in Fluc and reveal details about the coordination and hydration of both F<sup>-</sup> and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational approaches to investigate fluoride binding, selectivity and transport across the membrane.\",\"authors\":\"Kira R Mills, Hedieh Torabifard\",\"doi\":\"10.1016/bs.mie.2024.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F<sup>-</sup>) exporters: the CLC<sup>F</sup> F<sup>-</sup>/H<sup>+</sup> antiporter and the Fluc F<sup>-</sup> channel. The CLC<sup>F</sup> antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLC<sup>F</sup> transport process, including its selectivity for F<sup>-</sup> over HF. In contrast, the Fluc F<sup>-</sup> channel presents a novel architecture as a dual topology dimer, featuring two pores for F<sup>-</sup> export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F<sup>-</sup> export in Fluc and reveal details about the coordination and hydration of both F<sup>-</sup> and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2024.01.006\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.01.006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Computational approaches to investigate fluoride binding, selectivity and transport across the membrane.
The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F-) exporters: the CLCF F-/H+ antiporter and the Fluc F- channel. The CLCF antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLCF transport process, including its selectivity for F- over HF. In contrast, the Fluc F- channel presents a novel architecture as a dual topology dimer, featuring two pores for F- export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F- export in Fluc and reveal details about the coordination and hydration of both F- and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.