Letyfee Steinert, Michael Fuchs, Anna M Sigmund, Dario Didona, Christoph Hudemann, Christian Möbs, Michael Hertl, Takashi Hashimoto, Jens Waschke, Franziska Vielmuth
{"title":"在丘疹性荨麻疹中,脱丝体过度粘附会影响对脱丝蛋白相互作用的直接抑制。","authors":"Letyfee Steinert, Michael Fuchs, Anna M Sigmund, Dario Didona, Christoph Hudemann, Christian Möbs, Michael Hertl, Takashi Hashimoto, Jens Waschke, Franziska Vielmuth","doi":"10.1016/j.jid.2024.03.042","DOIUrl":null,"url":null,"abstract":"<p><p>During differentiation, keratinocytes acquire a strong, hyper-adhesive state, where desmosomal cadherins interact calcium ion independently. Previous data indicate that hyper-adhesion protects keratinocytes from pemphigus vulgaris autoantibody-induced loss of intercellular adhesion, although the underlying mechanism remains to be elucidated. Thus, in this study, we investigated the effect of hyper-adhesion on pemphigus vulgaris autoantibody-induced direct inhibition of desmoglein (DSG) 3 interactions by atomic force microscopy. Hyper-adhesion abolished loss of intercellular adhesion and corresponding morphological changes of all pathogenic antibodies used. Pemphigus autoantibodies putatively targeting several parts of the DSG3 extracellular domain and 2G4, targeting a membrane-proximal domain of DSG3, induced direct inhibition of DSG3 interactions only in non-hyper-adhesive keratinocytes. In contrast, AK23, targeting the N-terminal extracellular domain 1 of DSG3, caused direct inhibition under both adhesive states. However, antibody binding to desmosomal cadherins was not different between the distinct pathogenic antibodies used and was not changed during acquisition of hyper-adhesion. In addition, heterophilic DSC3-DSG3 and DSG2-DSG3 interactions did not cause reduced susceptibility to direct inhibition under hyper-adhesive condition in wild-type keratinocytes. Taken together, the data suggest that hyper-adhesion reduces susceptibility to autoantibody-induced direct inhibition in dependency on autoantibody-targeted extracellular domain but also demonstrate that further mechanisms are required for the protective effect of desmosomal hyper-adhesion in pemphigus vulgaris.</p>","PeriodicalId":94239,"journal":{"name":"The Journal of investigative dermatology","volume":" ","pages":"2682-2694.e10"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desmosomal Hyper-Adhesion Affects Direct Inhibition of Desmoglein Interactions in Pemphigus.\",\"authors\":\"Letyfee Steinert, Michael Fuchs, Anna M Sigmund, Dario Didona, Christoph Hudemann, Christian Möbs, Michael Hertl, Takashi Hashimoto, Jens Waschke, Franziska Vielmuth\",\"doi\":\"10.1016/j.jid.2024.03.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During differentiation, keratinocytes acquire a strong, hyper-adhesive state, where desmosomal cadherins interact calcium ion independently. Previous data indicate that hyper-adhesion protects keratinocytes from pemphigus vulgaris autoantibody-induced loss of intercellular adhesion, although the underlying mechanism remains to be elucidated. Thus, in this study, we investigated the effect of hyper-adhesion on pemphigus vulgaris autoantibody-induced direct inhibition of desmoglein (DSG) 3 interactions by atomic force microscopy. Hyper-adhesion abolished loss of intercellular adhesion and corresponding morphological changes of all pathogenic antibodies used. Pemphigus autoantibodies putatively targeting several parts of the DSG3 extracellular domain and 2G4, targeting a membrane-proximal domain of DSG3, induced direct inhibition of DSG3 interactions only in non-hyper-adhesive keratinocytes. In contrast, AK23, targeting the N-terminal extracellular domain 1 of DSG3, caused direct inhibition under both adhesive states. However, antibody binding to desmosomal cadherins was not different between the distinct pathogenic antibodies used and was not changed during acquisition of hyper-adhesion. In addition, heterophilic DSC3-DSG3 and DSG2-DSG3 interactions did not cause reduced susceptibility to direct inhibition under hyper-adhesive condition in wild-type keratinocytes. Taken together, the data suggest that hyper-adhesion reduces susceptibility to autoantibody-induced direct inhibition in dependency on autoantibody-targeted extracellular domain but also demonstrate that further mechanisms are required for the protective effect of desmosomal hyper-adhesion in pemphigus vulgaris.</p>\",\"PeriodicalId\":94239,\"journal\":{\"name\":\"The Journal of investigative dermatology\",\"volume\":\" \",\"pages\":\"2682-2694.e10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of investigative dermatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jid.2024.03.042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of investigative dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jid.2024.03.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Desmosomal Hyper-Adhesion Affects Direct Inhibition of Desmoglein Interactions in Pemphigus.
During differentiation, keratinocytes acquire a strong, hyper-adhesive state, where desmosomal cadherins interact calcium ion independently. Previous data indicate that hyper-adhesion protects keratinocytes from pemphigus vulgaris autoantibody-induced loss of intercellular adhesion, although the underlying mechanism remains to be elucidated. Thus, in this study, we investigated the effect of hyper-adhesion on pemphigus vulgaris autoantibody-induced direct inhibition of desmoglein (DSG) 3 interactions by atomic force microscopy. Hyper-adhesion abolished loss of intercellular adhesion and corresponding morphological changes of all pathogenic antibodies used. Pemphigus autoantibodies putatively targeting several parts of the DSG3 extracellular domain and 2G4, targeting a membrane-proximal domain of DSG3, induced direct inhibition of DSG3 interactions only in non-hyper-adhesive keratinocytes. In contrast, AK23, targeting the N-terminal extracellular domain 1 of DSG3, caused direct inhibition under both adhesive states. However, antibody binding to desmosomal cadherins was not different between the distinct pathogenic antibodies used and was not changed during acquisition of hyper-adhesion. In addition, heterophilic DSC3-DSG3 and DSG2-DSG3 interactions did not cause reduced susceptibility to direct inhibition under hyper-adhesive condition in wild-type keratinocytes. Taken together, the data suggest that hyper-adhesion reduces susceptibility to autoantibody-induced direct inhibition in dependency on autoantibody-targeted extracellular domain but also demonstrate that further mechanisms are required for the protective effect of desmosomal hyper-adhesion in pemphigus vulgaris.