Kaouther Nasri, Nadia Ben Jamaa, Soumeya Siala Gaigi, Moncef Feki, Raja Marrakchi
{"title":"MTHFR(C677T、A1298C)和 MTRR A66G 多态性与脂肪酸谱和神经管畸形风险的关系。","authors":"Kaouther Nasri, Nadia Ben Jamaa, Soumeya Siala Gaigi, Moncef Feki, Raja Marrakchi","doi":"10.1002/bdr2.2333","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>This study aims to determine if 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and methionine synthase reductase (MTRR A66G) gene polymorphisms were associated with fatty acid (FA) levels in mothers of fetuses with neural tube defects (NTDs) and whether these associations were modified by environmental factors.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Plasma FA composition was assessed using capillary gas chromatography. Concentrations of studied FA were compared between 42 mothers of NTDs fetuses and 30 controls as a function of each polymorphism by the Kruskal–Wallis nonparametric test.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In MTHFR gene C677T polymorphism, cases with (CT + TT) genotype had lower monounsaturated FAs (MUFA) and omega-3 polyunsaturated FA (n-3 PUFA) levels, but higher omega-6 polyunsaturated FAs (n-6 PUFA) and omega-6 polyunsaturated FAs: omega-3 polyunsaturated FAs (n-6:n-3) ratio levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype had lower MUFA levels, but higher PUFA and n-6 PUFA levels. Controls with (AG + GG) genotype had lower n-6 PUFA levels. In MTHFR gene C677T polymorphism, cases with smoking spouses and (CT + TT) genotype had lower MUFA and n-3 PUFA levels, but higher PUFA, n-6 PUFA, and n-6:n-3 ratio levels. Cases with (CT + TT) genotype and who used sauna during pregnancy had lower n-3 PUFA levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype and who used sauna during pregnancy had higher PUFA and n-6 PUFA levels.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Further research is required to clarify the association of FA metabolism and (MTHFR, MTRR) polymorphisms with NTDs.</p>\n </section>\n </div>","PeriodicalId":9121,"journal":{"name":"Birth Defects Research","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of MTHFR (C677T, A1298C) and MTRR A66G polymorphisms with fatty acids profile and risk of neural tube defects\",\"authors\":\"Kaouther Nasri, Nadia Ben Jamaa, Soumeya Siala Gaigi, Moncef Feki, Raja Marrakchi\",\"doi\":\"10.1002/bdr2.2333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>This study aims to determine if 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and methionine synthase reductase (MTRR A66G) gene polymorphisms were associated with fatty acid (FA) levels in mothers of fetuses with neural tube defects (NTDs) and whether these associations were modified by environmental factors.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Plasma FA composition was assessed using capillary gas chromatography. Concentrations of studied FA were compared between 42 mothers of NTDs fetuses and 30 controls as a function of each polymorphism by the Kruskal–Wallis nonparametric test.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In MTHFR gene C677T polymorphism, cases with (CT + TT) genotype had lower monounsaturated FAs (MUFA) and omega-3 polyunsaturated FA (n-3 PUFA) levels, but higher omega-6 polyunsaturated FAs (n-6 PUFA) and omega-6 polyunsaturated FAs: omega-3 polyunsaturated FAs (n-6:n-3) ratio levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype had lower MUFA levels, but higher PUFA and n-6 PUFA levels. Controls with (AG + GG) genotype had lower n-6 PUFA levels. In MTHFR gene C677T polymorphism, cases with smoking spouses and (CT + TT) genotype had lower MUFA and n-3 PUFA levels, but higher PUFA, n-6 PUFA, and n-6:n-3 ratio levels. Cases with (CT + TT) genotype and who used sauna during pregnancy had lower n-3 PUFA levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype and who used sauna during pregnancy had higher PUFA and n-6 PUFA levels.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Further research is required to clarify the association of FA metabolism and (MTHFR, MTRR) polymorphisms with NTDs.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9121,\"journal\":{\"name\":\"Birth Defects Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth Defects Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2333\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2333","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Association of MTHFR (C677T, A1298C) and MTRR A66G polymorphisms with fatty acids profile and risk of neural tube defects
Objective
This study aims to determine if 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and methionine synthase reductase (MTRR A66G) gene polymorphisms were associated with fatty acid (FA) levels in mothers of fetuses with neural tube defects (NTDs) and whether these associations were modified by environmental factors.
Methods
Plasma FA composition was assessed using capillary gas chromatography. Concentrations of studied FA were compared between 42 mothers of NTDs fetuses and 30 controls as a function of each polymorphism by the Kruskal–Wallis nonparametric test.
Results
In MTHFR gene C677T polymorphism, cases with (CT + TT) genotype had lower monounsaturated FAs (MUFA) and omega-3 polyunsaturated FA (n-3 PUFA) levels, but higher omega-6 polyunsaturated FAs (n-6 PUFA) and omega-6 polyunsaturated FAs: omega-3 polyunsaturated FAs (n-6:n-3) ratio levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype had lower MUFA levels, but higher PUFA and n-6 PUFA levels. Controls with (AG + GG) genotype had lower n-6 PUFA levels. In MTHFR gene C677T polymorphism, cases with smoking spouses and (CT + TT) genotype had lower MUFA and n-3 PUFA levels, but higher PUFA, n-6 PUFA, and n-6:n-3 ratio levels. Cases with (CT + TT) genotype and who used sauna during pregnancy had lower n-3 PUFA levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype and who used sauna during pregnancy had higher PUFA and n-6 PUFA levels.
Conclusions
Further research is required to clarify the association of FA metabolism and (MTHFR, MTRR) polymorphisms with NTDs.
期刊介绍:
The journal Birth Defects Research publishes original research and reviews in areas related to the etiology of adverse developmental and reproductive outcome. In particular the journal is devoted to the publication of original scientific research that contributes to the understanding of the biology of embryonic development and the prenatal causative factors and mechanisms leading to adverse pregnancy outcomes, namely structural and functional birth defects, pregnancy loss, postnatal functional defects in the human population, and to the identification of prenatal factors and biological mechanisms that reduce these risks.
Adverse reproductive and developmental outcomes may have genetic, environmental, nutritional or epigenetic causes. Accordingly, the journal Birth Defects Research takes an integrated, multidisciplinary approach in its organization and publication strategy. The journal Birth Defects Research contains separate sections for clinical and molecular teratology, developmental and reproductive toxicology, and reviews in developmental biology to acknowledge and accommodate the integrative nature of research in this field. Each section has a dedicated editor who is a leader in his/her field and who has full editorial authority in his/her area.