{"title":"运动对动物模型神经性疼痛炎症细胞因子的作用","authors":"Ya-Nan Zheng, Yi-Li Zheng, Xue-Qiang Wang, Pei-Jie Chen","doi":"10.1007/s12035-024-04214-4","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain (NP) resulting from a lesion or disease of the somatosensory system can lead to loss of function and reduced life quality. Neuroinflammation plays a vital role in the development and maintenance of NP. Exercise as an economical, effective, and nonpharmacological treatment, recommended by clinical practice guidelines, has been proven to alleviate chronic NP. Previous studies have shown that exercise decreases NP by modifying inflammation; however, the exact mechanisms of exercise-mediated NP are unclear. Therefore, from the perspective of neuroinflammation, this review mainly discussed the effects of exercise on inflammatory cytokines in different parts of NP conduction pathways, such as the brain, spinal cord, dorsal root ganglion, sciatic nerve, and blood in rat/mice models. Results suggested that exercise training could modulate neuroinflammation, inhibit astrocyte glial cell proliferation and microglial activation, alter the macrophage phenotype, reduce the expression of proinflammatory cytokines, increase anti-inflammatory cytokine levels, and positively modulate the state of the immune system, thereby relieving NP.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10288-10301"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Exercise on Inflammation Cytokines of Neuropathic Pain in Animal Models.\",\"authors\":\"Ya-Nan Zheng, Yi-Li Zheng, Xue-Qiang Wang, Pei-Jie Chen\",\"doi\":\"10.1007/s12035-024-04214-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuropathic pain (NP) resulting from a lesion or disease of the somatosensory system can lead to loss of function and reduced life quality. Neuroinflammation plays a vital role in the development and maintenance of NP. Exercise as an economical, effective, and nonpharmacological treatment, recommended by clinical practice guidelines, has been proven to alleviate chronic NP. Previous studies have shown that exercise decreases NP by modifying inflammation; however, the exact mechanisms of exercise-mediated NP are unclear. Therefore, from the perspective of neuroinflammation, this review mainly discussed the effects of exercise on inflammatory cytokines in different parts of NP conduction pathways, such as the brain, spinal cord, dorsal root ganglion, sciatic nerve, and blood in rat/mice models. Results suggested that exercise training could modulate neuroinflammation, inhibit astrocyte glial cell proliferation and microglial activation, alter the macrophage phenotype, reduce the expression of proinflammatory cytokines, increase anti-inflammatory cytokine levels, and positively modulate the state of the immune system, thereby relieving NP.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"10288-10301\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04214-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04214-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Role of Exercise on Inflammation Cytokines of Neuropathic Pain in Animal Models.
Neuropathic pain (NP) resulting from a lesion or disease of the somatosensory system can lead to loss of function and reduced life quality. Neuroinflammation plays a vital role in the development and maintenance of NP. Exercise as an economical, effective, and nonpharmacological treatment, recommended by clinical practice guidelines, has been proven to alleviate chronic NP. Previous studies have shown that exercise decreases NP by modifying inflammation; however, the exact mechanisms of exercise-mediated NP are unclear. Therefore, from the perspective of neuroinflammation, this review mainly discussed the effects of exercise on inflammatory cytokines in different parts of NP conduction pathways, such as the brain, spinal cord, dorsal root ganglion, sciatic nerve, and blood in rat/mice models. Results suggested that exercise training could modulate neuroinflammation, inhibit astrocyte glial cell proliferation and microglial activation, alter the macrophage phenotype, reduce the expression of proinflammatory cytokines, increase anti-inflammatory cytokine levels, and positively modulate the state of the immune system, thereby relieving NP.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.