探索人工智能支持的肿瘤药物警戒真实世界数据收集的复杂性。

IF 3.3 Q2 ONCOLOGY JCO Clinical Cancer Informatics Pub Date : 2024-05-01 DOI:10.1200/CCI.24.00051
Jack Gallifant, Leo Anthony Celi, Elad Sharon, Danielle S Bitterman
{"title":"探索人工智能支持的肿瘤药物警戒真实世界数据收集的复杂性。","authors":"Jack Gallifant, Leo Anthony Celi, Elad Sharon, Danielle S Bitterman","doi":"10.1200/CCI.24.00051","DOIUrl":null,"url":null,"abstract":"<p><p>This new editorial discusses the promise and challenges of successful integration of natural language processing methods into electronic health records for timely, robust, and fair oncology pharmacovigilance.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"8 ","pages":"e2400051"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Navigating the Complexities of Artificial Intelligence-Enabled Real-World Data Collection for Oncology Pharmacovigilance.\",\"authors\":\"Jack Gallifant, Leo Anthony Celi, Elad Sharon, Danielle S Bitterman\",\"doi\":\"10.1200/CCI.24.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This new editorial discusses the promise and challenges of successful integration of natural language processing methods into electronic health records for timely, robust, and fair oncology pharmacovigilance.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":\"8 \",\"pages\":\"e2400051\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.24.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

这篇新社论讨论了将自然语言处理方法成功整合到电子健康记录中以实现及时、稳健和公平的肿瘤药物警戒所带来的希望和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Navigating the Complexities of Artificial Intelligence-Enabled Real-World Data Collection for Oncology Pharmacovigilance.

This new editorial discusses the promise and challenges of successful integration of natural language processing methods into electronic health records for timely, robust, and fair oncology pharmacovigilance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
期刊最新文献
Development, Validation, and Clinical Utility of Electronic Patient-Reported Outcome Measure-Enhanced Prediction Models for Overall Survival in Patients With Advanced Non-Small Cell Lung Cancer Receiving Immunotherapy. Metastatic Versus Localized Disease as Inclusion Criteria That Can Be Automatically Extracted From Randomized Controlled Trials Using Natural Language Processing. Identifying Oncology Patients at High Risk for Potentially Preventable Emergency Department Visits Using a Novel Definition. Use of Patient-Reported Outcomes in Risk Prediction Model Development to Support Cancer Care Delivery: A Scoping Review. Optimizing End Points for Phase III Cancer Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1