对比增强 MRI 上的肝脏观察分割:SAM 和 MedSAM 在疑似或确诊肝细胞癌患者中的表现。

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes Pub Date : 2024-11-01 Epub Date: 2024-05-07 DOI:10.1177/08465371241250215
Ashirbani Saha, Christian B van der Pol
{"title":"对比增强 MRI 上的肝脏观察分割:SAM 和 MedSAM 在疑似或确诊肝细胞癌患者中的表现。","authors":"Ashirbani Saha, Christian B van der Pol","doi":"10.1177/08465371241250215","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> To evaluate factors impacting the Segment Anything Model (SAM) and variant MedSAM performance for segmenting liver observations on contrast-enhanced (CE) magnetic resonance imaging (MRI) in high-risk patients with probable hepatocellular carcinoma (HCC) (LR-4) and definite HCC (LR-5). <b>Methods:</b> A retrospective cohort of liver observations (LR-4/LR-5) on CE-MRI from 97 patients at high-risk for HCC was derived (2013-2018). Using bounding-boxes as prompts under 5-fold cross-validation, segmentation performance was evaluated at the model and liver observation-levels for: (1) model types: SAM versus MedSAM, (2) image sizes: 256 × 256 versus 512 × 512, (3) image channel composition: CE sequences at 3 phases of enhancement independently and combined, (4) liver observation size: >10 mm versus >20 mm, (5) certainty of diagnosis: LR-4 versus LR-5, and (6) contrast-agent type: hepatobiliary versus extracellular. Segmentation performance, quantified using Dice coefficient, were compared using univariate (Wilcoxon signed-rank and <i>t</i>-test) and multivariable analyses (multiple correspondence analysis and subsequent linear modelling). <b>Results:</b> MedSAM trained on 512 × 512 combined CE sequences performed best with mean Dice coefficient 0.68 (95% confidence interval 0.66, 0.69). Overall, all factors except contrast-agent type affected performance, with larger image size resulting in the highest performance improvement (512 × 512: 0.57, 256 × 256: 0.26, <i>P</i> < .001) at the model-level. Contrast-agents affected performance for patients with LR-4 observations using MedSAM-based models (<i>P</i> < .03). Larger observation size, image size, and higher certainty of diagnosis were associated with better segmentation on multivariable analysis. <b>Conclusion:</b> A variety of factors were found to impact SAM/MedSAM performance for segmenting liver observations in patients with probable and definite HCC on CE-MRI. Future models may be optimized by accounting for these factors.</p>","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liver Observation Segmentation on Contrast-Enhanced MRI: SAM and MedSAM Performance in Patients With Probable or Definite Hepatocellular Carcinoma.\",\"authors\":\"Ashirbani Saha, Christian B van der Pol\",\"doi\":\"10.1177/08465371241250215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose:</b> To evaluate factors impacting the Segment Anything Model (SAM) and variant MedSAM performance for segmenting liver observations on contrast-enhanced (CE) magnetic resonance imaging (MRI) in high-risk patients with probable hepatocellular carcinoma (HCC) (LR-4) and definite HCC (LR-5). <b>Methods:</b> A retrospective cohort of liver observations (LR-4/LR-5) on CE-MRI from 97 patients at high-risk for HCC was derived (2013-2018). Using bounding-boxes as prompts under 5-fold cross-validation, segmentation performance was evaluated at the model and liver observation-levels for: (1) model types: SAM versus MedSAM, (2) image sizes: 256 × 256 versus 512 × 512, (3) image channel composition: CE sequences at 3 phases of enhancement independently and combined, (4) liver observation size: >10 mm versus >20 mm, (5) certainty of diagnosis: LR-4 versus LR-5, and (6) contrast-agent type: hepatobiliary versus extracellular. Segmentation performance, quantified using Dice coefficient, were compared using univariate (Wilcoxon signed-rank and <i>t</i>-test) and multivariable analyses (multiple correspondence analysis and subsequent linear modelling). <b>Results:</b> MedSAM trained on 512 × 512 combined CE sequences performed best with mean Dice coefficient 0.68 (95% confidence interval 0.66, 0.69). Overall, all factors except contrast-agent type affected performance, with larger image size resulting in the highest performance improvement (512 × 512: 0.57, 256 × 256: 0.26, <i>P</i> < .001) at the model-level. Contrast-agents affected performance for patients with LR-4 observations using MedSAM-based models (<i>P</i> < .03). Larger observation size, image size, and higher certainty of diagnosis were associated with better segmentation on multivariable analysis. <b>Conclusion:</b> A variety of factors were found to impact SAM/MedSAM performance for segmenting liver observations in patients with probable and definite HCC on CE-MRI. Future models may be optimized by accounting for these factors.</p>\",\"PeriodicalId\":55290,\"journal\":{\"name\":\"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08465371241250215\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08465371241250215","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估影响造影剂增强(CE)磁共振成像(MRI)对可能患有肝细胞癌(HCC)(LR-4)和明确患有肝细胞癌(HCC)(LR-5)的高风险患者的肝脏观察结果进行分割的任何模型(SAM)和变体 MedSAM 性能的因素。研究方法从 97 名 HCC 高危患者的 CE-MRI 肝脏观察结果(LR-4/LR-5)中得出一个回顾性队列(2013-2018 年)。在 5 倍交叉验证下使用边界框作为提示,在模型和肝脏观测水平上对以下方面的分割性能进行了评估:(1) 模型类型:(1) 模型类型:SAM 与 MedSAM;(2) 图像大小:256 × 256 与 512 × 512;(3) 图像通道组成:(4) 肝脏观察尺寸:>10毫米与>20毫米,(5) 诊断的确定性:(5) 诊断确定性:LR-4 与 LR-5,以及 (6) 造影剂类型:肝胆与细胞外。利用单变量分析(Wilcoxon 符号秩和 t 检验)和多变量分析(多重对应分析和后续线性建模)比较了使用 Dice 系数量化的分割性能。结果在 512 × 512 组合 CE 序列上训练的 MedSAM 表现最佳,平均 Dice 系数为 0.68(95% 置信区间为 0.66,0.69)。总体而言,除对比剂类型外,所有因素都会影响性能,在模型水平上,图像尺寸越大,性能提高幅度越大(512 × 512:0.57,256 × 256:0.26,P < .001)。对于使用基于 MedSAM 的模型进行 LR-4 观察的患者,对比剂会影响其性能(P < .03)。在多变量分析中,较大的观察尺寸、图像尺寸和较高的诊断确定性与较好的分割效果相关。结论:研究发现,多种因素会影响SAM/MedSAM对CE-MRI上疑似和确诊HCC患者肝脏观察结果的分割效果。未来的模型可通过考虑这些因素进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Liver Observation Segmentation on Contrast-Enhanced MRI: SAM and MedSAM Performance in Patients With Probable or Definite Hepatocellular Carcinoma.

Purpose: To evaluate factors impacting the Segment Anything Model (SAM) and variant MedSAM performance for segmenting liver observations on contrast-enhanced (CE) magnetic resonance imaging (MRI) in high-risk patients with probable hepatocellular carcinoma (HCC) (LR-4) and definite HCC (LR-5). Methods: A retrospective cohort of liver observations (LR-4/LR-5) on CE-MRI from 97 patients at high-risk for HCC was derived (2013-2018). Using bounding-boxes as prompts under 5-fold cross-validation, segmentation performance was evaluated at the model and liver observation-levels for: (1) model types: SAM versus MedSAM, (2) image sizes: 256 × 256 versus 512 × 512, (3) image channel composition: CE sequences at 3 phases of enhancement independently and combined, (4) liver observation size: >10 mm versus >20 mm, (5) certainty of diagnosis: LR-4 versus LR-5, and (6) contrast-agent type: hepatobiliary versus extracellular. Segmentation performance, quantified using Dice coefficient, were compared using univariate (Wilcoxon signed-rank and t-test) and multivariable analyses (multiple correspondence analysis and subsequent linear modelling). Results: MedSAM trained on 512 × 512 combined CE sequences performed best with mean Dice coefficient 0.68 (95% confidence interval 0.66, 0.69). Overall, all factors except contrast-agent type affected performance, with larger image size resulting in the highest performance improvement (512 × 512: 0.57, 256 × 256: 0.26, P < .001) at the model-level. Contrast-agents affected performance for patients with LR-4 observations using MedSAM-based models (P < .03). Larger observation size, image size, and higher certainty of diagnosis were associated with better segmentation on multivariable analysis. Conclusion: A variety of factors were found to impact SAM/MedSAM performance for segmenting liver observations in patients with probable and definite HCC on CE-MRI. Future models may be optimized by accounting for these factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.90%
发文量
98
审稿时长
6-12 weeks
期刊介绍: The Canadian Association of Radiologists Journal is a peer-reviewed, Medline-indexed publication that presents a broad scientific review of radiology in Canada. The Journal covers such topics as abdominal imaging, cardiovascular radiology, computed tomography, continuing professional development, education and training, gastrointestinal radiology, health policy and practice, magnetic resonance imaging, musculoskeletal radiology, neuroradiology, nuclear medicine, pediatric radiology, radiology history, radiology practice guidelines and advisories, thoracic and cardiac imaging, trauma and emergency room imaging, ultrasonography, and vascular and interventional radiology. Article types considered for publication include original research articles, critically appraised topics, review articles, guest editorials, pictorial essays, technical notes, and letter to the Editor.
期刊最新文献
Addressing Gender Disparities for Equitable Practice in Radiology. Cinematic Rendering of Pancreatic Neuroendocrine Tumours: Opportunities for Clinical Implementation: Part 1: Tumour Detection and Characterization. Cinematic Rendering of Pancreatic Neuroendocrine Tumours: Opportunities for Clinical Implementation: Part 2: Preoperative Planning and Evaluation of Metastatic Disease. Correlative Assessment of Machine Learning-Based Cobb Angle Measurements and Human-Based Measurements in Adolescent Idiopathic and Congenital Scoliosis. Driving Change: Direct Patient Access to Medical Imaging Reports and the Need for Radiologist Involvement in Decision-Making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1