嵌入氮掺杂碳纳米片中的钴@钌核@壳纳米粒子作为可逆氧电催化剂

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-05-03 DOI:10.1016/j.jcat.2024.115532
Shunlian Ning , Jiayu Lao , Wei Zhou , Yanting Ye , Qikai Wu , Mingzhe Chen , Ming-Hsien Lee , Tianchen Cui , Dengke Zhao , Nan Wang , Shaowei Chen
{"title":"嵌入氮掺杂碳纳米片中的钴@钌核@壳纳米粒子作为可逆氧电催化剂","authors":"Shunlian Ning ,&nbsp;Jiayu Lao ,&nbsp;Wei Zhou ,&nbsp;Yanting Ye ,&nbsp;Qikai Wu ,&nbsp;Mingzhe Chen ,&nbsp;Ming-Hsien Lee ,&nbsp;Tianchen Cui ,&nbsp;Dengke Zhao ,&nbsp;Nan Wang ,&nbsp;Shaowei Chen","doi":"10.1016/j.jcat.2024.115532","DOIUrl":null,"url":null,"abstract":"<div><p>Rational design and engineering of cost-effective, high-performance reversible oxygen electrocatalysts for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is imperative in advancing the progress of rechargeable metal-air batteries (r-MABs). Herein, nanocomposites based on Co@Ru core@shell nanoparticles embedded within N-doped carbon nanosheets (Co@Ru/CS) are prepared via facile galvanic exchange reactions of RuCl<sub>3</sub> with Co/NC and used as an effective oxygen electrocatalyst for rechargeable zinc-air battery (r-ZAB). Electrochemical studies demonstrate a remarkable bifunctional catalytic performance of Co@Ru/CS towards both ORR and OER, featuring a low potential gap (ΔE) of only 0.69 V between the OER potential (E<sub>10,OER</sub>) at 10 mA cm<sup>−2</sup> and half-wave potential (E<sub>1/2,ORR</sub>) of ORR, which is much lower than that of commercial Pt/C + RuO<sub>2</sub> catalysts (0.76 V). Combined studies of experimental characterizations and density functional theory calculations show that the ORR activity arises primarily from the N-doped carbon and CoN<em><sub>x</sub></em> moieties in the composites, whereas RuO<sub>2</sub>/CoOOH produced at high electrode potentials is responsible for the OER activity. Co@Ru/CS based r-ZAB exhibits an open circuit voltage of 1.447 V, specific capacity of 781 mAh g<sub>Zn</sub><sup>−1</sup>, and maximum power density of 115 mW cm<sup>−2</sup> at 0.83 V, a performance better than that with commercial Pt/C + RuO<sub>2</sub> (1.412 V, 760.56 mAh g<sub>Zn</sub><sup>−1</sup>, and 91 mW cm<sup>−2</sup>). Results from this research underline the substantial impact of structural engineering on optimizing the electrocatalytic activity of nanocomposites for r-MABs.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt@Ruthenium Core@Shell nanoparticles embedded within nitrogen-doped carbon nanosheets as reversible oxygen electrocatalysts\",\"authors\":\"Shunlian Ning ,&nbsp;Jiayu Lao ,&nbsp;Wei Zhou ,&nbsp;Yanting Ye ,&nbsp;Qikai Wu ,&nbsp;Mingzhe Chen ,&nbsp;Ming-Hsien Lee ,&nbsp;Tianchen Cui ,&nbsp;Dengke Zhao ,&nbsp;Nan Wang ,&nbsp;Shaowei Chen\",\"doi\":\"10.1016/j.jcat.2024.115532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rational design and engineering of cost-effective, high-performance reversible oxygen electrocatalysts for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is imperative in advancing the progress of rechargeable metal-air batteries (r-MABs). Herein, nanocomposites based on Co@Ru core@shell nanoparticles embedded within N-doped carbon nanosheets (Co@Ru/CS) are prepared via facile galvanic exchange reactions of RuCl<sub>3</sub> with Co/NC and used as an effective oxygen electrocatalyst for rechargeable zinc-air battery (r-ZAB). Electrochemical studies demonstrate a remarkable bifunctional catalytic performance of Co@Ru/CS towards both ORR and OER, featuring a low potential gap (ΔE) of only 0.69 V between the OER potential (E<sub>10,OER</sub>) at 10 mA cm<sup>−2</sup> and half-wave potential (E<sub>1/2,ORR</sub>) of ORR, which is much lower than that of commercial Pt/C + RuO<sub>2</sub> catalysts (0.76 V). Combined studies of experimental characterizations and density functional theory calculations show that the ORR activity arises primarily from the N-doped carbon and CoN<em><sub>x</sub></em> moieties in the composites, whereas RuO<sub>2</sub>/CoOOH produced at high electrode potentials is responsible for the OER activity. Co@Ru/CS based r-ZAB exhibits an open circuit voltage of 1.447 V, specific capacity of 781 mAh g<sub>Zn</sub><sup>−1</sup>, and maximum power density of 115 mW cm<sup>−2</sup> at 0.83 V, a performance better than that with commercial Pt/C + RuO<sub>2</sub> (1.412 V, 760.56 mAh g<sub>Zn</sub><sup>−1</sup>, and 91 mW cm<sup>−2</sup>). Results from this research underline the substantial impact of structural engineering on optimizing the electrocatalytic activity of nanocomposites for r-MABs.</p></div>\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021951724002458\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724002458","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

要推动可充电金属-空气电池(r-MABs)的发展,就必须合理设计和制造用于氧进化反应(OER)和氧还原反应(ORR)的高性价比、高性能可逆氧电催化剂。本文通过 RuCl3 与 Co/NC 的简便电交换反应,制备了嵌入 N 掺杂碳纳米片(Co@Ru/CS)的基于 Co@Ru 核@壳纳米颗粒的纳米复合材料,并将其用作可充电锌空气电池(r-ZAB)的有效氧电催化剂。电化学研究表明,Co@Ru/CS 对 ORR 和 OER 均具有显著的双功能催化性能,在 10 mA cm-2 时,OER 电位(E10,OER)与 ORR 的半波电位(E1/2,ORR)之间的电位差(ΔE)仅为 0.69 V,远低于商用 Pt/C + RuO2 催化剂的电位差(0.76 V)。实验表征和密度泛函理论计算的综合研究表明,ORR 活性主要来自复合材料中的掺杂 N 的碳和 CoNx 分子,而在高电极电位下产生的 RuO2/CoOOH 则是 OER 活性的原因。基于 Co@Ru/CS 的 r-ZAB 的开路电压为 1.447 V,比容量为 781 mAh gZn-1,在 0.83 V 时的最大功率密度为 115 mW cm-2,性能优于商用 Pt/C + RuO2(1.412 V、760.56 mAh gZn-1 和 91 mW cm-2)。这项研究的结果凸显了结构工程对优化 r-MABs 纳米复合材料电催化活性的重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cobalt@Ruthenium Core@Shell nanoparticles embedded within nitrogen-doped carbon nanosheets as reversible oxygen electrocatalysts

Rational design and engineering of cost-effective, high-performance reversible oxygen electrocatalysts for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is imperative in advancing the progress of rechargeable metal-air batteries (r-MABs). Herein, nanocomposites based on Co@Ru core@shell nanoparticles embedded within N-doped carbon nanosheets (Co@Ru/CS) are prepared via facile galvanic exchange reactions of RuCl3 with Co/NC and used as an effective oxygen electrocatalyst for rechargeable zinc-air battery (r-ZAB). Electrochemical studies demonstrate a remarkable bifunctional catalytic performance of Co@Ru/CS towards both ORR and OER, featuring a low potential gap (ΔE) of only 0.69 V between the OER potential (E10,OER) at 10 mA cm−2 and half-wave potential (E1/2,ORR) of ORR, which is much lower than that of commercial Pt/C + RuO2 catalysts (0.76 V). Combined studies of experimental characterizations and density functional theory calculations show that the ORR activity arises primarily from the N-doped carbon and CoNx moieties in the composites, whereas RuO2/CoOOH produced at high electrode potentials is responsible for the OER activity. Co@Ru/CS based r-ZAB exhibits an open circuit voltage of 1.447 V, specific capacity of 781 mAh gZn−1, and maximum power density of 115 mW cm−2 at 0.83 V, a performance better than that with commercial Pt/C + RuO2 (1.412 V, 760.56 mAh gZn−1, and 91 mW cm−2). Results from this research underline the substantial impact of structural engineering on optimizing the electrocatalytic activity of nanocomposites for r-MABs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
On the secondary promotion effect of Al and Ga on Cu/ZnO methanol synthesis catalysts Effect of 4,4′-dialkyl-2,2′-bipyridine ligands on the hydrolysis of dichlorodioxomolybdenum(VI) catalyst precursors and the switch from homogeneous epoxidation to heterogeneous systems Ligand engineering regulates the electronic structure of Ni-N-C sites to promote electrocatalytic acetylene semi-hydrogenation Structure sensitivity in the formic acid-driven catalytic transfer hydrogenation of maleic acid to succinic acid over Pd/catalysts Palladium-Catalyzed branch hydroaminocarbonylation of terminal alkynes with nitroarenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1