{"title":"各向同性弹性介质中的径向横向各向同性夹杂物:局部场、中性夹杂物、有效弹性特性","authors":"S. Kanaun","doi":"10.1016/j.ijengsci.2024.104078","DOIUrl":null,"url":null,"abstract":"<div><p>Radially transverse isotropic inclusions in homogeneous isotropic elastic host media are considered. Mellin transform method is used for solution of the volume integral equation of the problem for an isolated inclusion subjected to a constant external stress (strain) field. The tensor structure of the solution is revealed with precision to three scalar functions of the radial coordinate, and the system of ordinary differential equations for these functions is derived. For multilayered radially transverse isotropic inclusions with constant elastic coefficients inside layers, explicit solution of these equations is obtained. An efficient numerical algorithm of solution for inclusions with an arbitrary number of the layers is proposed. Neutral inclusions that do not disturb homogeneous external fields applied to the medium are considered. It is shown that an inclusion with an isotropic core and radially transverse isotropic external layer can be weak neutral by appropriate choice of the layer elastic constants. The effective field method is used for determination of the effective elastic stiffness tensor of a homogeneous isotropic medium containing a random set of radially transverse isotropic inclusions.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"200 ","pages":"Article 104078"},"PeriodicalIF":5.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radially transverse isotropic inclusions in isotropic elastic media: Local fields, neutral inclusions, effective elastic properties\",\"authors\":\"S. Kanaun\",\"doi\":\"10.1016/j.ijengsci.2024.104078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radially transverse isotropic inclusions in homogeneous isotropic elastic host media are considered. Mellin transform method is used for solution of the volume integral equation of the problem for an isolated inclusion subjected to a constant external stress (strain) field. The tensor structure of the solution is revealed with precision to three scalar functions of the radial coordinate, and the system of ordinary differential equations for these functions is derived. For multilayered radially transverse isotropic inclusions with constant elastic coefficients inside layers, explicit solution of these equations is obtained. An efficient numerical algorithm of solution for inclusions with an arbitrary number of the layers is proposed. Neutral inclusions that do not disturb homogeneous external fields applied to the medium are considered. It is shown that an inclusion with an isotropic core and radially transverse isotropic external layer can be weak neutral by appropriate choice of the layer elastic constants. The effective field method is used for determination of the effective elastic stiffness tensor of a homogeneous isotropic medium containing a random set of radially transverse isotropic inclusions.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"200 \",\"pages\":\"Article 104078\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000624\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000624","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Radially transverse isotropic inclusions in isotropic elastic media: Local fields, neutral inclusions, effective elastic properties
Radially transverse isotropic inclusions in homogeneous isotropic elastic host media are considered. Mellin transform method is used for solution of the volume integral equation of the problem for an isolated inclusion subjected to a constant external stress (strain) field. The tensor structure of the solution is revealed with precision to three scalar functions of the radial coordinate, and the system of ordinary differential equations for these functions is derived. For multilayered radially transverse isotropic inclusions with constant elastic coefficients inside layers, explicit solution of these equations is obtained. An efficient numerical algorithm of solution for inclusions with an arbitrary number of the layers is proposed. Neutral inclusions that do not disturb homogeneous external fields applied to the medium are considered. It is shown that an inclusion with an isotropic core and radially transverse isotropic external layer can be weak neutral by appropriate choice of the layer elastic constants. The effective field method is used for determination of the effective elastic stiffness tensor of a homogeneous isotropic medium containing a random set of radially transverse isotropic inclusions.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.