Shbbir R. Khan , Poonam C. Singh , Martin Schmettow , Satish K. Singh , Neelkamal Rastogi
{"title":"探索地栖蚁生物扰动活动对煤矿废弃物物理化学、生物特性和重金属污染的影响","authors":"Shbbir R. Khan , Poonam C. Singh , Martin Schmettow , Satish K. Singh , Neelkamal Rastogi","doi":"10.1016/j.pedobi.2024.150960","DOIUrl":null,"url":null,"abstract":"<div><p>Coal mining activities increase the soil concentrations of heavy metals manifold thus impacting soil health and biodiversity. The understanding of the impact of bioturbation activities by ant colonies on soil in coal mine spoil site across different restoration ages is not studied. The study aimed to investigate the influence of bioturbation activities by two most common and distinct coal mine site inhabiting ant species (<em>C. compressus</em> and <em>C. longipedem</em>) at six different ages (2, 4, 6, 8, 10 and 12 years old) on the soil heavy metal concentrations of Fe, Zn, Mn, Cu, Ni, Pb, Cd and Cr, pH, OM, TC, TN, soil enzyme activity of DH, ACP, β-glucosidase and proteases properties of soil. Soil samples were collected from opencast coalmine spoils during October and November 2017. Reference (Ref.) soil samples (n=10 per site) were collected (from area adjacent to ant nest colony approximately 2–5 m distance) from a depth of 0–15 cm and ant nest debris soil of each ant species (n=10 per site) were collected from each site. Heavy metal pollution decreased and pH, OM, TC, TN and soil enzyme activity of DH, ACP, β-glucosidase and proteases of soil in both Ref. soil and ant nest debris soil increases with the increase of mine site restoration age. Our study revealed that different age of the mine spoil have more profound effects on the soil quality and heavy metal content. Contrary to our hypothesis, regression analysis did not support our notion that ant bioturbation activity directly accelerate heavy metal breakdown. Instead, our findings suggests that ant colonies prefer to construct their nest for the locations with lower heavy metal concentrations and higher enzyme activity and increase in soil porosity is a key factor behind the low heavy metal concentration in the nest debris soil.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"104 ","pages":"Article 150960"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the influence of ground-dwelling ant bioturbation activity on physico-chemical, biological properties and heavy metal pollution in coal mine spoil\",\"authors\":\"Shbbir R. Khan , Poonam C. Singh , Martin Schmettow , Satish K. Singh , Neelkamal Rastogi\",\"doi\":\"10.1016/j.pedobi.2024.150960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coal mining activities increase the soil concentrations of heavy metals manifold thus impacting soil health and biodiversity. The understanding of the impact of bioturbation activities by ant colonies on soil in coal mine spoil site across different restoration ages is not studied. The study aimed to investigate the influence of bioturbation activities by two most common and distinct coal mine site inhabiting ant species (<em>C. compressus</em> and <em>C. longipedem</em>) at six different ages (2, 4, 6, 8, 10 and 12 years old) on the soil heavy metal concentrations of Fe, Zn, Mn, Cu, Ni, Pb, Cd and Cr, pH, OM, TC, TN, soil enzyme activity of DH, ACP, β-glucosidase and proteases properties of soil. Soil samples were collected from opencast coalmine spoils during October and November 2017. Reference (Ref.) soil samples (n=10 per site) were collected (from area adjacent to ant nest colony approximately 2–5 m distance) from a depth of 0–15 cm and ant nest debris soil of each ant species (n=10 per site) were collected from each site. Heavy metal pollution decreased and pH, OM, TC, TN and soil enzyme activity of DH, ACP, β-glucosidase and proteases of soil in both Ref. soil and ant nest debris soil increases with the increase of mine site restoration age. Our study revealed that different age of the mine spoil have more profound effects on the soil quality and heavy metal content. Contrary to our hypothesis, regression analysis did not support our notion that ant bioturbation activity directly accelerate heavy metal breakdown. Instead, our findings suggests that ant colonies prefer to construct their nest for the locations with lower heavy metal concentrations and higher enzyme activity and increase in soil porosity is a key factor behind the low heavy metal concentration in the nest debris soil.</p></div>\",\"PeriodicalId\":49711,\"journal\":{\"name\":\"Pedobiologia\",\"volume\":\"104 \",\"pages\":\"Article 150960\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedobiologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031405624034814\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405624034814","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Exploring the influence of ground-dwelling ant bioturbation activity on physico-chemical, biological properties and heavy metal pollution in coal mine spoil
Coal mining activities increase the soil concentrations of heavy metals manifold thus impacting soil health and biodiversity. The understanding of the impact of bioturbation activities by ant colonies on soil in coal mine spoil site across different restoration ages is not studied. The study aimed to investigate the influence of bioturbation activities by two most common and distinct coal mine site inhabiting ant species (C. compressus and C. longipedem) at six different ages (2, 4, 6, 8, 10 and 12 years old) on the soil heavy metal concentrations of Fe, Zn, Mn, Cu, Ni, Pb, Cd and Cr, pH, OM, TC, TN, soil enzyme activity of DH, ACP, β-glucosidase and proteases properties of soil. Soil samples were collected from opencast coalmine spoils during October and November 2017. Reference (Ref.) soil samples (n=10 per site) were collected (from area adjacent to ant nest colony approximately 2–5 m distance) from a depth of 0–15 cm and ant nest debris soil of each ant species (n=10 per site) were collected from each site. Heavy metal pollution decreased and pH, OM, TC, TN and soil enzyme activity of DH, ACP, β-glucosidase and proteases of soil in both Ref. soil and ant nest debris soil increases with the increase of mine site restoration age. Our study revealed that different age of the mine spoil have more profound effects on the soil quality and heavy metal content. Contrary to our hypothesis, regression analysis did not support our notion that ant bioturbation activity directly accelerate heavy metal breakdown. Instead, our findings suggests that ant colonies prefer to construct their nest for the locations with lower heavy metal concentrations and higher enzyme activity and increase in soil porosity is a key factor behind the low heavy metal concentration in the nest debris soil.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.