E. N. Sokolova, S. Z. Smirnov, V. S. Sekisova, N. S. Bortnikov, N. V. Gorelikova, V. G. Thomas
{"title":"Vysokogorskoe 斑岩锡矿床(俄罗斯滨海边疆区卡瓦列罗沃矿区锡霍特-阿林)的岩浆-流体系统:岩浆阶段","authors":"E. N. Sokolova, S. Z. Smirnov, V. S. Sekisova, N. S. Bortnikov, N. V. Gorelikova, V. G. Thomas","doi":"10.1134/s107570152307022x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Inclusions of the mineral-forming media in quartz of the Vysokogorskoe deposit are studied in detail. The compositions of the melts correspond to peraluminous potassium granites of normal alkalinity, depleted in rare alkalis, F, and Cl. The water content in the melts reached 7–9 wt %; CO<sub>2</sub> and CH<sub>4</sub> were also important in mineralizing fluids. Quartz crystallized at 620–650°C. Assemblages of four types have been identified as primary fluid inclusions: (1) inclusions of carbonate or sulfate aqueous solutions coexisting with melt inclusions, (2) low-density vapor-dominated primarily magmatic inclusions, (3) presumably postmagmatic low-salinity aqueous and vapor-dominated inclusions, and (4) multiphase fluid inclusions associated with vapor-dominated ones also formed at the postmagmatic stage. Daughter pyrosmalite–(Fe) and hibbingite, which was found for the first time in inclusions from quartz of the Vysokogorskoe deposit, made it possible to characterize the solutions as high-salinity chloride Na/K and Fe<sup>2+</sup>. Presumably, those solutions may have been the most efficient in Sn transport during the formation of fluid–explosive breccias and vein mineralization of the Vysokogorskoe deposit. The magma chamber itself most likely served as a heat source and, to a large extent, a source of aqueous fluid for the hydrothermal system of the deposit.</p>","PeriodicalId":12719,"journal":{"name":"Geology of Ore Deposits","volume":"12 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magmatic–Fluid System of the Vysokogorskoe Porphyry Tin Deposit (Sikhote-Alin, Kavalerovo Ore District, Primorsky Krai, Russia): a Magmatic Stage\",\"authors\":\"E. N. Sokolova, S. Z. Smirnov, V. S. Sekisova, N. S. Bortnikov, N. V. Gorelikova, V. G. Thomas\",\"doi\":\"10.1134/s107570152307022x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Inclusions of the mineral-forming media in quartz of the Vysokogorskoe deposit are studied in detail. The compositions of the melts correspond to peraluminous potassium granites of normal alkalinity, depleted in rare alkalis, F, and Cl. The water content in the melts reached 7–9 wt %; CO<sub>2</sub> and CH<sub>4</sub> were also important in mineralizing fluids. Quartz crystallized at 620–650°C. Assemblages of four types have been identified as primary fluid inclusions: (1) inclusions of carbonate or sulfate aqueous solutions coexisting with melt inclusions, (2) low-density vapor-dominated primarily magmatic inclusions, (3) presumably postmagmatic low-salinity aqueous and vapor-dominated inclusions, and (4) multiphase fluid inclusions associated with vapor-dominated ones also formed at the postmagmatic stage. Daughter pyrosmalite–(Fe) and hibbingite, which was found for the first time in inclusions from quartz of the Vysokogorskoe deposit, made it possible to characterize the solutions as high-salinity chloride Na/K and Fe<sup>2+</sup>. Presumably, those solutions may have been the most efficient in Sn transport during the formation of fluid–explosive breccias and vein mineralization of the Vysokogorskoe deposit. The magma chamber itself most likely served as a heat source and, to a large extent, a source of aqueous fluid for the hydrothermal system of the deposit.</p>\",\"PeriodicalId\":12719,\"journal\":{\"name\":\"Geology of Ore Deposits\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology of Ore Deposits\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s107570152307022x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology of Ore Deposits","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s107570152307022x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Magmatic–Fluid System of the Vysokogorskoe Porphyry Tin Deposit (Sikhote-Alin, Kavalerovo Ore District, Primorsky Krai, Russia): a Magmatic Stage
Abstract
Inclusions of the mineral-forming media in quartz of the Vysokogorskoe deposit are studied in detail. The compositions of the melts correspond to peraluminous potassium granites of normal alkalinity, depleted in rare alkalis, F, and Cl. The water content in the melts reached 7–9 wt %; CO2 and CH4 were also important in mineralizing fluids. Quartz crystallized at 620–650°C. Assemblages of four types have been identified as primary fluid inclusions: (1) inclusions of carbonate or sulfate aqueous solutions coexisting with melt inclusions, (2) low-density vapor-dominated primarily magmatic inclusions, (3) presumably postmagmatic low-salinity aqueous and vapor-dominated inclusions, and (4) multiphase fluid inclusions associated with vapor-dominated ones also formed at the postmagmatic stage. Daughter pyrosmalite–(Fe) and hibbingite, which was found for the first time in inclusions from quartz of the Vysokogorskoe deposit, made it possible to characterize the solutions as high-salinity chloride Na/K and Fe2+. Presumably, those solutions may have been the most efficient in Sn transport during the formation of fluid–explosive breccias and vein mineralization of the Vysokogorskoe deposit. The magma chamber itself most likely served as a heat source and, to a large extent, a source of aqueous fluid for the hydrothermal system of the deposit.
期刊介绍:
Geology of Ore Deposits is a periodical covering the topic of metallic and nonmetallic mineral deposits, their formation conditions, and spatial and temporal distribution. The journal publishes original scientific articles and reviews on a wide range of problems in theoretical and applied geology. The journal focuses on the following problems: deep geological structure and geodynamic environment of ore formation; distribution pattern of metallogenic zones and mineral deposits; geology and formation environment of large and unique metallic and nonmetallic deposits; mineralogy of metallic and nonmetallic deposits; physicochemical and isotopic characteristics and geochemical environment of ore deposition; evolution of ore-forming systems; radiogeology and radioecology, economic problems in exploring, developing, and mining of ore commodities.