Zihan Wang, Zhien Zhang, Mohamad Reza Soltanian, Ruizhi Pang
{"title":"燃烧后碳捕获中的促进传输膜:聚合物材料的最新进展和实际应用面临的挑战","authors":"Zihan Wang, Zhien Zhang, Mohamad Reza Soltanian, Ruizhi Pang","doi":"10.1016/j.gee.2024.04.010","DOIUrl":null,"url":null,"abstract":"Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture. The central principle is to utilize the affinity of CO for the carrier to achieve efficient separation and to break the Robson upper bound. This paper reviews the progress of facilitated transport membranes research regarding polymer materials, principles, and problems faced at this stage. Firstly, we briefly introduce the transport mechanism of the facilitated transport membranes. Then the research progress of several major polymers used for facilitated transport membranes for CO/N separation was presented in the past five years. Additionally, we analyze the primary challenges of facilitated transport membranes, including the influence of water, the effect of temperature, the saturation effect of the carrier, and the process configuration. Finally, we also delve into the challenges and competitiveness of facilitated transport membranes.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"9 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilitated transport membranes in post-combustion carbon capture: Recent advancements in polymer materials and challenges towards practical application\",\"authors\":\"Zihan Wang, Zhien Zhang, Mohamad Reza Soltanian, Ruizhi Pang\",\"doi\":\"10.1016/j.gee.2024.04.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture. The central principle is to utilize the affinity of CO for the carrier to achieve efficient separation and to break the Robson upper bound. This paper reviews the progress of facilitated transport membranes research regarding polymer materials, principles, and problems faced at this stage. Firstly, we briefly introduce the transport mechanism of the facilitated transport membranes. Then the research progress of several major polymers used for facilitated transport membranes for CO/N separation was presented in the past five years. Additionally, we analyze the primary challenges of facilitated transport membranes, including the influence of water, the effect of temperature, the saturation effect of the carrier, and the process configuration. Finally, we also delve into the challenges and competitiveness of facilitated transport membranes.\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2024.04.010\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.04.010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Facilitated transport membranes in post-combustion carbon capture: Recent advancements in polymer materials and challenges towards practical application
Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture. The central principle is to utilize the affinity of CO for the carrier to achieve efficient separation and to break the Robson upper bound. This paper reviews the progress of facilitated transport membranes research regarding polymer materials, principles, and problems faced at this stage. Firstly, we briefly introduce the transport mechanism of the facilitated transport membranes. Then the research progress of several major polymers used for facilitated transport membranes for CO/N separation was presented in the past five years. Additionally, we analyze the primary challenges of facilitated transport membranes, including the influence of water, the effect of temperature, the saturation effect of the carrier, and the process configuration. Finally, we also delve into the challenges and competitiveness of facilitated transport membranes.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.