宽带模型 RIS 辅助下的多用户 MISO-OFDM 系统最大最小速率优化

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Information Technology & Electronic Engineering Pub Date : 2024-01-29 DOI:10.1631/fitee.2300120
Yonghua Quan, Zhong Tian, Zhengchuan Chen, Min Wang, Yunjian Jia
{"title":"宽带模型 RIS 辅助下的多用户 MISO-OFDM 系统最大最小速率优化","authors":"Yonghua Quan, Zhong Tian, Zhengchuan Chen, Min Wang, Yunjian Jia","doi":"10.1631/fitee.2300120","DOIUrl":null,"url":null,"abstract":"<p>Reconfigurable intelligent surfaces (RISs) have the capability to change the wireless environment smartly Considering the attenuation of subchannels and crowding users involved in the wideband system, we introduce RISs into the multi-user multi-input single-output (MU-MISO) system with orthogonal frequency division multiplexing (OFDM) for performance enhancement. Maximizing the minimum rate of dense users in an MU-MISO-OFDM system assisted by RIS with an approximate practical model is formulated as the joint optimization problem involving subcarrier allocation, transmit precoding (TPC) matrices at the base station, and RIS passive beamforming. A coalition-game subcarrier allocation (CSA) algorithm is proposed to solve space–frequency resource allocation on subcarriers, which reforms the interference topology among dense users. Fractional programming and convex optimization method are used to optimize the TPC matrices and the RIS passive beamforming, which improves the spectral efficiency synthetically across all subchannels in the wideband system. Simulation results indicate that the CSA algorithm provides a significant gain for dense users. Besides, the proposed joint optimization method shows the considerable advantage of the RISs in the MU-MISO-OFDM system.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Max-min rate optimization for multi-user MISO-OFDM systems assisted by RIS with a wideband model\",\"authors\":\"Yonghua Quan, Zhong Tian, Zhengchuan Chen, Min Wang, Yunjian Jia\",\"doi\":\"10.1631/fitee.2300120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reconfigurable intelligent surfaces (RISs) have the capability to change the wireless environment smartly Considering the attenuation of subchannels and crowding users involved in the wideband system, we introduce RISs into the multi-user multi-input single-output (MU-MISO) system with orthogonal frequency division multiplexing (OFDM) for performance enhancement. Maximizing the minimum rate of dense users in an MU-MISO-OFDM system assisted by RIS with an approximate practical model is formulated as the joint optimization problem involving subcarrier allocation, transmit precoding (TPC) matrices at the base station, and RIS passive beamforming. A coalition-game subcarrier allocation (CSA) algorithm is proposed to solve space–frequency resource allocation on subcarriers, which reforms the interference topology among dense users. Fractional programming and convex optimization method are used to optimize the TPC matrices and the RIS passive beamforming, which improves the spectral efficiency synthetically across all subchannels in the wideband system. Simulation results indicate that the CSA algorithm provides a significant gain for dense users. Besides, the proposed joint optimization method shows the considerable advantage of the RISs in the MU-MISO-OFDM system.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300120\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300120","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

可重构智能表面(RIS)具有智能改变无线环境的能力 考虑到宽带系统中涉及的子信道衰减和用户拥挤问题,我们将 RIS 引入了采用正交频分复用(OFDM)技术的多用户多输入单输出(MU-MISO)系统,以提高其性能。在 RIS 辅助下的 MU-MISO-OFDM 系统中,通过近似实用模型使密集用户的最小速率最大化,是一个涉及子载波分配、基站发送预编码矩阵和 RIS 无源波束成形的联合优化问题。提出了一种联盟-博弈子载波分配(CSA)算法来解决子载波上的空间-频率资源分配问题,该算法对密集用户之间的干扰拓扑结构进行了改革。利用分数编程和凸优化方法优化了 TPC 矩阵和 RIS 无源波束成形,从而综合提高了宽带系统中所有子信道的频谱效率。仿真结果表明,CSA 算法可为密集用户带来显著增益。此外,所提出的联合优化方法显示了 RIS 在 MU-MISO-OFDM 系统中的显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Max-min rate optimization for multi-user MISO-OFDM systems assisted by RIS with a wideband model

Reconfigurable intelligent surfaces (RISs) have the capability to change the wireless environment smartly Considering the attenuation of subchannels and crowding users involved in the wideband system, we introduce RISs into the multi-user multi-input single-output (MU-MISO) system with orthogonal frequency division multiplexing (OFDM) for performance enhancement. Maximizing the minimum rate of dense users in an MU-MISO-OFDM system assisted by RIS with an approximate practical model is formulated as the joint optimization problem involving subcarrier allocation, transmit precoding (TPC) matrices at the base station, and RIS passive beamforming. A coalition-game subcarrier allocation (CSA) algorithm is proposed to solve space–frequency resource allocation on subcarriers, which reforms the interference topology among dense users. Fractional programming and convex optimization method are used to optimize the TPC matrices and the RIS passive beamforming, which improves the spectral efficiency synthetically across all subchannels in the wideband system. Simulation results indicate that the CSA algorithm provides a significant gain for dense users. Besides, the proposed joint optimization method shows the considerable advantage of the RISs in the MU-MISO-OFDM system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
期刊最新文献
A novel overlapping minimization SMOTE algorithm for imbalanced classification A review on the developments and space applications of mid- and long-wavelength infrared detection technologies Detecting compromised accounts caused by phone number recycling on e-commerce platforms: taking Meituan as an example Flocking fragmentation formulation for a multi-robot system under multi-hop and lossy ad hoc networks Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1