用于双极化独立轨道角动量通信的多馈送多模式元表面

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Information Technology & Electronic Engineering Pub Date : 2024-01-29 DOI:10.1631/fitee.2200471
Lingjun Yang, Sheng Sun, Wei E. I. Sha, Long Li, Jun Hu
{"title":"用于双极化独立轨道角动量通信的多馈送多模式元表面","authors":"Lingjun Yang, Sheng Sun, Wei E. I. Sha, Long Li, Jun Hu","doi":"10.1631/fitee.2200471","DOIUrl":null,"url":null,"abstract":"<p>The wavefront control of spin or orbital angular momentum (OAM) is widely applied in the optical and radio fields. However, most passive metasurfaces provide limited manipulations, such as the spin-locked wavefront, a static OAM combination, or an uncontrollable OAM energy distribution. We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states, while simultaneously, the energy distribution of carrying OAM modes is controllable. Specifically, four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases. The robustness of these elements is analyzed. By involving the amplitude term and multi-feed technology in the design process, the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations. OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces. The powers of different channels are adjustable by the provided amplitude term, and the maximum crosstalk is −9 dB, proving the effectiveness and practicability of the proposed method.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"27 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization\",\"authors\":\"Lingjun Yang, Sheng Sun, Wei E. I. Sha, Long Li, Jun Hu\",\"doi\":\"10.1631/fitee.2200471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The wavefront control of spin or orbital angular momentum (OAM) is widely applied in the optical and radio fields. However, most passive metasurfaces provide limited manipulations, such as the spin-locked wavefront, a static OAM combination, or an uncontrollable OAM energy distribution. We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states, while simultaneously, the energy distribution of carrying OAM modes is controllable. Specifically, four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases. The robustness of these elements is analyzed. By involving the amplitude term and multi-feed technology in the design process, the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations. OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces. The powers of different channels are adjustable by the provided amplitude term, and the maximum crosstalk is −9 dB, proving the effectiveness and practicability of the proposed method.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2200471\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200471","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自旋或轨道角动量(OAM)的波面控制被广泛应用于光学和无线电领域。然而,大多数无源元表面提供的操作都很有限,例如自旋锁定波前、静态 OAM 组合或不可控制的 OAM 能量分布。我们提出了一种反射型多馈源元表面,可独立生成多模 OAM 波束,其 OAM 组合和自旋状态可动态切换,同时,携带 OAM 模式的能量分布也是可控的。具体来说,我们提出了四个元素,通过结合传播相位和几何相位来克服自旋锁定相位限制。分析了这些元素的稳健性。通过在设计过程中引入振幅项和多馈送技术,所提出的元面可以产生能量分布可控的 OAM 波束模式和可切换的模式组合。通过使用一对所提出的元面,在 14 GHz 频率下实验演示了基于 OAM 的无线电通信,具有四个独立信道。不同信道的功率可通过提供的幅度项进行调节,最大串扰为-9 dB,证明了所提方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization

The wavefront control of spin or orbital angular momentum (OAM) is widely applied in the optical and radio fields. However, most passive metasurfaces provide limited manipulations, such as the spin-locked wavefront, a static OAM combination, or an uncontrollable OAM energy distribution. We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states, while simultaneously, the energy distribution of carrying OAM modes is controllable. Specifically, four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases. The robustness of these elements is analyzed. By involving the amplitude term and multi-feed technology in the design process, the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations. OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces. The powers of different channels are adjustable by the provided amplitude term, and the maximum crosstalk is −9 dB, proving the effectiveness and practicability of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
期刊最新文献
A novel overlapping minimization SMOTE algorithm for imbalanced classification A review on the developments and space applications of mid- and long-wavelength infrared detection technologies Detecting compromised accounts caused by phone number recycling on e-commerce platforms: taking Meituan as an example Flocking fragmentation formulation for a multi-robot system under multi-hop and lossy ad hoc networks Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1