Lingjun Yang, Sheng Sun, Wei E. I. Sha, Long Li, Jun Hu
{"title":"用于双极化独立轨道角动量通信的多馈送多模式元表面","authors":"Lingjun Yang, Sheng Sun, Wei E. I. Sha, Long Li, Jun Hu","doi":"10.1631/fitee.2200471","DOIUrl":null,"url":null,"abstract":"<p>The wavefront control of spin or orbital angular momentum (OAM) is widely applied in the optical and radio fields. However, most passive metasurfaces provide limited manipulations, such as the spin-locked wavefront, a static OAM combination, or an uncontrollable OAM energy distribution. We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states, while simultaneously, the energy distribution of carrying OAM modes is controllable. Specifically, four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases. The robustness of these elements is analyzed. By involving the amplitude term and multi-feed technology in the design process, the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations. OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces. The powers of different channels are adjustable by the provided amplitude term, and the maximum crosstalk is −9 dB, proving the effectiveness and practicability of the proposed method.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"27 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization\",\"authors\":\"Lingjun Yang, Sheng Sun, Wei E. I. Sha, Long Li, Jun Hu\",\"doi\":\"10.1631/fitee.2200471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The wavefront control of spin or orbital angular momentum (OAM) is widely applied in the optical and radio fields. However, most passive metasurfaces provide limited manipulations, such as the spin-locked wavefront, a static OAM combination, or an uncontrollable OAM energy distribution. We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states, while simultaneously, the energy distribution of carrying OAM modes is controllable. Specifically, four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases. The robustness of these elements is analyzed. By involving the amplitude term and multi-feed technology in the design process, the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations. OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces. The powers of different channels are adjustable by the provided amplitude term, and the maximum crosstalk is −9 dB, proving the effectiveness and practicability of the proposed method.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2200471\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200471","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization
The wavefront control of spin or orbital angular momentum (OAM) is widely applied in the optical and radio fields. However, most passive metasurfaces provide limited manipulations, such as the spin-locked wavefront, a static OAM combination, or an uncontrollable OAM energy distribution. We propose a reflection-type multi-feed metasurface to independently generate multi-mode OAM beams with dynamically switchable OAM combinations and spin states, while simultaneously, the energy distribution of carrying OAM modes is controllable. Specifically, four elements are proposed to overcome the spin-locked phase limitation by combining propagation and geometric phases. The robustness of these elements is analyzed. By involving the amplitude term and multi-feed technology in the design process, the proposed metasurface can generate OAM beams with a controllable energy distribution over modes and switchable mode combinations. OAM-based radio communication with four independent channels is experimentally demonstrated at 14 GHz by employing a pair of the proposed metasurfaces. The powers of different channels are adjustable by the provided amplitude term, and the maximum crosstalk is −9 dB, proving the effectiveness and practicability of the proposed method.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.