Bishoy K. Sharobim, Muhammad Hosam, Salwa K. Abd-El-Hafiz, Wafaa S. Sayed, Lobna A. Said, Ahmed G. Radwan
{"title":"基于混沌的秘密图像共享系统不同设计的软件和硬件实现","authors":"Bishoy K. Sharobim, Muhammad Hosam, Salwa K. Abd-El-Hafiz, Wafaa S. Sayed, Lobna A. Said, Ahmed G. Radwan","doi":"10.1007/s11554-024-01450-8","DOIUrl":null,"url":null,"abstract":"<p>Secret image sharing (SIS) conveys a secret image to mutually suspicious receivers by sending meaningless shares to the participants, and all shares must be present to recover the secret. This paper proposes and compares three systems for secret sharing, where a visual cryptography system is designed with a fast recovery scheme as the backbone for all systems. Then, an SIS system is introduced for sharing any type of image, where it improves security using the Lorenz chaotic system as the source of randomness and the generalized Arnold transform as a permutation module. The second SIS system further enhances security and robustness by utilizing SHA-256 and RSA cryptosystem. The presented architectures are implemented on a field programmable gate array (FPGA) to enhance computational efficiency and facilitate real-time processing. Detailed experimental results and comparisons between the software and hardware realizations are presented. Security analysis and comparisons with related literature are also introduced with good results, including statistical tests, differential attack measures, robustness tests against noise and crop attacks, key sensitivity tests, and performance analysis.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"2012 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software and hardware realizations for different designs of chaos-based secret image sharing systems\",\"authors\":\"Bishoy K. Sharobim, Muhammad Hosam, Salwa K. Abd-El-Hafiz, Wafaa S. Sayed, Lobna A. Said, Ahmed G. Radwan\",\"doi\":\"10.1007/s11554-024-01450-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Secret image sharing (SIS) conveys a secret image to mutually suspicious receivers by sending meaningless shares to the participants, and all shares must be present to recover the secret. This paper proposes and compares three systems for secret sharing, where a visual cryptography system is designed with a fast recovery scheme as the backbone for all systems. Then, an SIS system is introduced for sharing any type of image, where it improves security using the Lorenz chaotic system as the source of randomness and the generalized Arnold transform as a permutation module. The second SIS system further enhances security and robustness by utilizing SHA-256 and RSA cryptosystem. The presented architectures are implemented on a field programmable gate array (FPGA) to enhance computational efficiency and facilitate real-time processing. Detailed experimental results and comparisons between the software and hardware realizations are presented. Security analysis and comparisons with related literature are also introduced with good results, including statistical tests, differential attack measures, robustness tests against noise and crop attacks, key sensitivity tests, and performance analysis.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01450-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01450-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Software and hardware realizations for different designs of chaos-based secret image sharing systems
Secret image sharing (SIS) conveys a secret image to mutually suspicious receivers by sending meaningless shares to the participants, and all shares must be present to recover the secret. This paper proposes and compares three systems for secret sharing, where a visual cryptography system is designed with a fast recovery scheme as the backbone for all systems. Then, an SIS system is introduced for sharing any type of image, where it improves security using the Lorenz chaotic system as the source of randomness and the generalized Arnold transform as a permutation module. The second SIS system further enhances security and robustness by utilizing SHA-256 and RSA cryptosystem. The presented architectures are implemented on a field programmable gate array (FPGA) to enhance computational efficiency and facilitate real-time processing. Detailed experimental results and comparisons between the software and hardware realizations are presented. Security analysis and comparisons with related literature are also introduced with good results, including statistical tests, differential attack measures, robustness tests against noise and crop attacks, key sensitivity tests, and performance analysis.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.