A. V. Polkovnichenko, N. N. Kulov, A. V. Kisel’, N. N. Kuritsyn, S. Ya. Kvashnin, E. V. Lunachev
{"title":"癸alin或萘氟化产品工业混合物的分离。顺式和反式全氟萘烷与全氟丁基环己烷二元混合物结晶的物理化学基础","authors":"A. V. Polkovnichenko, N. N. Kulov, A. V. Kisel’, N. N. Kuritsyn, S. Ya. Kvashnin, E. V. Lunachev","doi":"10.1134/S0040579523060179","DOIUrl":null,"url":null,"abstract":"<p>Physical–chemical data on the liquid–solid phase transitions in the binary systems <i>trans</i>-perfluorodecalin (trans-PFD)–<i>cis</i>-perfluorodecalin (cis-PFD), trans-PFD–perfluorobutylcyclohexane (BCH), and cis-PFD–BCH are obtained. All three systems are characterized by the presence of a temperature extremum on the fusibility curve. For the <i>trans</i>-PFD–BCH system, the liquidus line can be described by the equation for simple eutectic systems with the assumed activity coefficient <span>\\(\\gamma _{i}^{l}\\)</span> = 1, which indicates that the behavior of the system is close to ideal. The process of bulk crystallization is considered using the example of a <i>cis</i>‑PFD–BCH mixture. It is demonstrated that from <i>cis</i>-PFD–BCH mixtures with an initial content <i>x</i><sub><i>cis-PFD</i></sub> = 0.7348 and 0.6447 mol. fr., <i>cis</i>-PFD can be isolated with a purity of more than 0.99 mol. fr. in three crystallization cycles.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 6","pages":"1268 - 1275"},"PeriodicalIF":0.7000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of an Industrial Mixture of Decalin or Naphthalene Fluorination Products. Physicochemical Foundations of Crystallization of Binary Mixtures of cis- and trans-Perfluorodecalin and Perfluorobutylcyclohexane\",\"authors\":\"A. V. Polkovnichenko, N. N. Kulov, A. V. Kisel’, N. N. Kuritsyn, S. Ya. Kvashnin, E. V. Lunachev\",\"doi\":\"10.1134/S0040579523060179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Physical–chemical data on the liquid–solid phase transitions in the binary systems <i>trans</i>-perfluorodecalin (trans-PFD)–<i>cis</i>-perfluorodecalin (cis-PFD), trans-PFD–perfluorobutylcyclohexane (BCH), and cis-PFD–BCH are obtained. All three systems are characterized by the presence of a temperature extremum on the fusibility curve. For the <i>trans</i>-PFD–BCH system, the liquidus line can be described by the equation for simple eutectic systems with the assumed activity coefficient <span>\\\\(\\\\gamma _{i}^{l}\\\\)</span> = 1, which indicates that the behavior of the system is close to ideal. The process of bulk crystallization is considered using the example of a <i>cis</i>‑PFD–BCH mixture. It is demonstrated that from <i>cis</i>-PFD–BCH mixtures with an initial content <i>x</i><sub><i>cis-PFD</i></sub> = 0.7348 and 0.6447 mol. fr., <i>cis</i>-PFD can be isolated with a purity of more than 0.99 mol. fr. in three crystallization cycles.</p>\",\"PeriodicalId\":798,\"journal\":{\"name\":\"Theoretical Foundations of Chemical Engineering\",\"volume\":\"57 6\",\"pages\":\"1268 - 1275\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Foundations of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040579523060179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Foundations of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0040579523060179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Separation of an Industrial Mixture of Decalin or Naphthalene Fluorination Products. Physicochemical Foundations of Crystallization of Binary Mixtures of cis- and trans-Perfluorodecalin and Perfluorobutylcyclohexane
Physical–chemical data on the liquid–solid phase transitions in the binary systems trans-perfluorodecalin (trans-PFD)–cis-perfluorodecalin (cis-PFD), trans-PFD–perfluorobutylcyclohexane (BCH), and cis-PFD–BCH are obtained. All three systems are characterized by the presence of a temperature extremum on the fusibility curve. For the trans-PFD–BCH system, the liquidus line can be described by the equation for simple eutectic systems with the assumed activity coefficient \(\gamma _{i}^{l}\) = 1, which indicates that the behavior of the system is close to ideal. The process of bulk crystallization is considered using the example of a cis‑PFD–BCH mixture. It is demonstrated that from cis-PFD–BCH mixtures with an initial content xcis-PFD = 0.7348 and 0.6447 mol. fr., cis-PFD can be isolated with a purity of more than 0.99 mol. fr. in three crystallization cycles.
期刊介绍:
Theoretical Foundations of Chemical Engineering is a comprehensive journal covering all aspects of theoretical and applied research in chemical engineering, including transport phenomena; surface phenomena; processes of mixture separation; theory and methods of chemical reactor design; combined processes and multifunctional reactors; hydromechanic, thermal, diffusion, and chemical processes and apparatus, membrane processes and reactors; biotechnology; dispersed systems; nanotechnologies; process intensification; information modeling and analysis; energy- and resource-saving processes; environmentally clean processes and technologies.