拓展环苷酸药物应用的显示技术

IF 2.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Israel Journal of Chemistry Pub Date : 2024-05-06 DOI:10.1002/ijch.202400010
Jing Xie, Meng-Wei Kan, Simon J. de Veer, Conan Wang, David J. Craik
{"title":"拓展环苷酸药物应用的显示技术","authors":"Jing Xie,&nbsp;Meng-Wei Kan,&nbsp;Simon J. de Veer,&nbsp;Conan Wang,&nbsp;David J. Craik","doi":"10.1002/ijch.202400010","DOIUrl":null,"url":null,"abstract":"<p>Cyclotides are ultra-stable peptides originally discovered in plants based on their medicinal applications. Their natural function is as host defence agents. They are amenable to chemical synthesis for use as scaffolds for drug design applications. Cyclotides comprise ~30 amino acids and in addition to having a head-to-tail cyclic backbone, incorporate six conserved cystine residues connected in a cystine knot motif. The cyclic backbone and cystine knot contribute to their exceptional resistance to proteases or thermal denaturation, making them useful scaffolds for drug design applications. The backbone segments, or loops, between the conserved cysteine residues are amenable to combinatorial variation in native cyclotides and have also been used to incorporate selected bioactive peptide epitopes into a range of synthetic cyclotides and cyclotide-like scaffolds. In the past this was largely done via low throughput structure-based design approaches, but the discovery of novel cyclotide binders has been greatly enhanced by the use of combinatorial display approaches on cyclotide scaffolds using phage, bacterial, yeast and mRNA technologies, as reviewed herein.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 8-9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400010","citationCount":"0","resultStr":"{\"title\":\"Display Technologies for Expanding the Pharmaceutical Applications of Cyclotides\",\"authors\":\"Jing Xie,&nbsp;Meng-Wei Kan,&nbsp;Simon J. de Veer,&nbsp;Conan Wang,&nbsp;David J. Craik\",\"doi\":\"10.1002/ijch.202400010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cyclotides are ultra-stable peptides originally discovered in plants based on their medicinal applications. Their natural function is as host defence agents. They are amenable to chemical synthesis for use as scaffolds for drug design applications. Cyclotides comprise ~30 amino acids and in addition to having a head-to-tail cyclic backbone, incorporate six conserved cystine residues connected in a cystine knot motif. The cyclic backbone and cystine knot contribute to their exceptional resistance to proteases or thermal denaturation, making them useful scaffolds for drug design applications. The backbone segments, or loops, between the conserved cysteine residues are amenable to combinatorial variation in native cyclotides and have also been used to incorporate selected bioactive peptide epitopes into a range of synthetic cyclotides and cyclotide-like scaffolds. In the past this was largely done via low throughput structure-based design approaches, but the discovery of novel cyclotide binders has been greatly enhanced by the use of combinatorial display approaches on cyclotide scaffolds using phage, bacterial, yeast and mRNA technologies, as reviewed herein.</p>\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":\"64 8-9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400010\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400010","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

环肽是一种超稳定肽,最初是根据其药用价值从植物中发现的。它们的天然功能是作为宿主防御剂。它们易于化学合成,可用作药物设计应用的支架。环肽由约 30 个氨基酸组成,除了具有头对尾的环状骨架外,还包含以胱氨酸结图案连接的六个保守胱氨酸残基。环状骨架和胱氨酸结使它们对蛋白酶或热变性具有超强的抵抗力,从而使它们成为药物设计应用的有用支架。保守的半胱氨酸残基之间的骨架区段或环路可在原生环肽中进行组合变化,也可用于将选定的生物活性肽表位纳入一系列合成环肽和类环肽支架中。过去这主要是通过低通量的基于结构的设计方法来实现的,但通过使用噬菌体、细菌、酵母和 mRNA 技术对环肽支架进行组合展示,新型环肽结合剂的发现得到了极大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Display Technologies for Expanding the Pharmaceutical Applications of Cyclotides

Cyclotides are ultra-stable peptides originally discovered in plants based on their medicinal applications. Their natural function is as host defence agents. They are amenable to chemical synthesis for use as scaffolds for drug design applications. Cyclotides comprise ~30 amino acids and in addition to having a head-to-tail cyclic backbone, incorporate six conserved cystine residues connected in a cystine knot motif. The cyclic backbone and cystine knot contribute to their exceptional resistance to proteases or thermal denaturation, making them useful scaffolds for drug design applications. The backbone segments, or loops, between the conserved cysteine residues are amenable to combinatorial variation in native cyclotides and have also been used to incorporate selected bioactive peptide epitopes into a range of synthetic cyclotides and cyclotide-like scaffolds. In the past this was largely done via low throughput structure-based design approaches, but the discovery of novel cyclotide binders has been greatly enhanced by the use of combinatorial display approaches on cyclotide scaffolds using phage, bacterial, yeast and mRNA technologies, as reviewed herein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Israel Journal of Chemistry
Israel Journal of Chemistry 化学-化学综合
CiteScore
6.20
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry. The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH. The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.
期刊最新文献
Cover Picture: (Isr. J. Chem. 8-9/2024) Special Issue on RNA-Based Catalysts that Revolutionized the Discovery of Bioactive Peptides Hexagonal and Trigonal Quasiperiodic Tilings Breaking the Degeneracy of Sense Codons – How Far Can We Go? Cover Picture: (Isr. J. Chem. 6-7/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1