{"title":"中国西北部渤中次盆地非均衡压实引起的超压产生机理","authors":"Liang Shi, Zhenkui Jin, Xiao’er Zhu, Mengli Lin, Baowen Guan","doi":"10.1007/s13202-024-01811-w","DOIUrl":null,"url":null,"abstract":"<p>In sedimentary basins, deep-seated overpressure conditions are frequently encountered. However, the precise origins of these overpressure conditions and the assessment of their formation times have long presented challenges. Previous studies have primarily relied on qualitative approaches to investigate overpressure origins, leading to substantial uncertainties in their findings. Based on theories such as the effective stress law, disequilibrium compaction, equilibrium depth, and nested fluid trapping containers in this paper, a new quantitative methodology is introduced for identifying the disequilibrium-compaction-induced origins of overpressure conditions. Additionally, the formation times of overpressure can be also estimated by nested fluid trapping container theory. This methodology is successfully applied to the northwestern Bozhong subbasin in the Bohai Bay Basin, China. The results indicate that the overpressure within the Dongying Formation of the northwestern Bozhong subbasin is primarily attributed to the disequilibrium compaction of mudstone, because the disequilibrium compaction of mudstone accounts for over 90% of the pressure in sandstone. Furthermore, the overpressure system in this area is not singular but comprises multiple nested relative fluid trapping containers. The application of nested fluid trapping container theory allows for an estimation of the overpressure’s formation time, although further validation of these estimates is required. It should be noted that the method proposed in this paper is particularly suited for sedimentary basins with relatively weak tectonic activity.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"11 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation mechanism of overpressures caused by disequilibrium compaction in the northwestern Bozhong subbasin, China\",\"authors\":\"Liang Shi, Zhenkui Jin, Xiao’er Zhu, Mengli Lin, Baowen Guan\",\"doi\":\"10.1007/s13202-024-01811-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In sedimentary basins, deep-seated overpressure conditions are frequently encountered. However, the precise origins of these overpressure conditions and the assessment of their formation times have long presented challenges. Previous studies have primarily relied on qualitative approaches to investigate overpressure origins, leading to substantial uncertainties in their findings. Based on theories such as the effective stress law, disequilibrium compaction, equilibrium depth, and nested fluid trapping containers in this paper, a new quantitative methodology is introduced for identifying the disequilibrium-compaction-induced origins of overpressure conditions. Additionally, the formation times of overpressure can be also estimated by nested fluid trapping container theory. This methodology is successfully applied to the northwestern Bozhong subbasin in the Bohai Bay Basin, China. The results indicate that the overpressure within the Dongying Formation of the northwestern Bozhong subbasin is primarily attributed to the disequilibrium compaction of mudstone, because the disequilibrium compaction of mudstone accounts for over 90% of the pressure in sandstone. Furthermore, the overpressure system in this area is not singular but comprises multiple nested relative fluid trapping containers. The application of nested fluid trapping container theory allows for an estimation of the overpressure’s formation time, although further validation of these estimates is required. It should be noted that the method proposed in this paper is particularly suited for sedimentary basins with relatively weak tectonic activity.</p>\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-024-01811-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01811-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Generation mechanism of overpressures caused by disequilibrium compaction in the northwestern Bozhong subbasin, China
In sedimentary basins, deep-seated overpressure conditions are frequently encountered. However, the precise origins of these overpressure conditions and the assessment of their formation times have long presented challenges. Previous studies have primarily relied on qualitative approaches to investigate overpressure origins, leading to substantial uncertainties in their findings. Based on theories such as the effective stress law, disequilibrium compaction, equilibrium depth, and nested fluid trapping containers in this paper, a new quantitative methodology is introduced for identifying the disequilibrium-compaction-induced origins of overpressure conditions. Additionally, the formation times of overpressure can be also estimated by nested fluid trapping container theory. This methodology is successfully applied to the northwestern Bozhong subbasin in the Bohai Bay Basin, China. The results indicate that the overpressure within the Dongying Formation of the northwestern Bozhong subbasin is primarily attributed to the disequilibrium compaction of mudstone, because the disequilibrium compaction of mudstone accounts for over 90% of the pressure in sandstone. Furthermore, the overpressure system in this area is not singular but comprises multiple nested relative fluid trapping containers. The application of nested fluid trapping container theory allows for an estimation of the overpressure’s formation time, although further validation of these estimates is required. It should be noted that the method proposed in this paper is particularly suited for sedimentary basins with relatively weak tectonic activity.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies