An Hao, Li Jin, Wang Tianzhe, Zang Jie, Zhang Xianliang, Hao Yong
{"title":"航天器近距离相对运动的姿态和轨道耦合动力学机制与应用","authors":"An Hao, Li Jin, Wang Tianzhe, Zang Jie, Zhang Xianliang, Hao Yong","doi":"10.1155/2024/6636084","DOIUrl":null,"url":null,"abstract":"This paper analyzes the root causes of attitude-orbit coupling effects of spacecraft proximity relative motion in space precision collaborative tasks from three aspects: mathematical representation, physical definition, and engineering applications. At first, taking mathematical representation as the context, spacecraft proximity relative motion representations such as particle relative dynamic model, extended particle relative dynamic model, and dual-spiral-based relative dynamic model are investigated in detail. On this basis, the mechanism of attitude-orbit coupling effects originating from different mathematical representations is further investigated. Second, spiral theory–based attitude-orbit coupling relative dynamics is developed. The innovation of this work is extending the dual number representation from rigid body to flexible body, which makes it possible to describe the proximity relative motion between two rigid-flexible coupling spacecraft. Third, the application value of attitude-orbit coupling relative dynamic model in precision collaborative mission such as precision formation, rendezvous and docking, space manipulation, and on-orbit assembly is provided. Finally, simulation results verify the engineering significance of the attitude-orbit coupling relative dynamic model.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"39 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion\",\"authors\":\"An Hao, Li Jin, Wang Tianzhe, Zang Jie, Zhang Xianliang, Hao Yong\",\"doi\":\"10.1155/2024/6636084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the root causes of attitude-orbit coupling effects of spacecraft proximity relative motion in space precision collaborative tasks from three aspects: mathematical representation, physical definition, and engineering applications. At first, taking mathematical representation as the context, spacecraft proximity relative motion representations such as particle relative dynamic model, extended particle relative dynamic model, and dual-spiral-based relative dynamic model are investigated in detail. On this basis, the mechanism of attitude-orbit coupling effects originating from different mathematical representations is further investigated. Second, spiral theory–based attitude-orbit coupling relative dynamics is developed. The innovation of this work is extending the dual number representation from rigid body to flexible body, which makes it possible to describe the proximity relative motion between two rigid-flexible coupling spacecraft. Third, the application value of attitude-orbit coupling relative dynamic model in precision collaborative mission such as precision formation, rendezvous and docking, space manipulation, and on-orbit assembly is provided. Finally, simulation results verify the engineering significance of the attitude-orbit coupling relative dynamic model.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6636084\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6636084","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion
This paper analyzes the root causes of attitude-orbit coupling effects of spacecraft proximity relative motion in space precision collaborative tasks from three aspects: mathematical representation, physical definition, and engineering applications. At first, taking mathematical representation as the context, spacecraft proximity relative motion representations such as particle relative dynamic model, extended particle relative dynamic model, and dual-spiral-based relative dynamic model are investigated in detail. On this basis, the mechanism of attitude-orbit coupling effects originating from different mathematical representations is further investigated. Second, spiral theory–based attitude-orbit coupling relative dynamics is developed. The innovation of this work is extending the dual number representation from rigid body to flexible body, which makes it possible to describe the proximity relative motion between two rigid-flexible coupling spacecraft. Third, the application value of attitude-orbit coupling relative dynamic model in precision collaborative mission such as precision formation, rendezvous and docking, space manipulation, and on-orbit assembly is provided. Finally, simulation results verify the engineering significance of the attitude-orbit coupling relative dynamic model.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.