{"title":"珊瑚礁石灰岩裂缝扩展和水力压裂行为分析","authors":"Tingting Liu, Yiqiang Shao, Chao Zhang, Xinping Li, Yi Luo, Xiaoqing Wei","doi":"10.1007/s40571-024-00759-2","DOIUrl":null,"url":null,"abstract":"<p>Understanding the hydraulic fracturing (HF) characteristics of coral reef limestone (CRL) is of great significance for improving the mining efficiency of seabed energy (such as gas and oil) and ensuring the stability of rock masses in marine underground engineering. To investigate the crack evolution mechanism of CRL under hydraulic coupling, numerical simulations of HF on CRL are carried out using particle flow code (PFC). Firstly, a numerical model method based on two-dimensional particle flow code (PFC2D) is proposed to establish the random pore distribution model of CRL, and its effectiveness is verified through indoor experiments. Then, based on the random pore distribution method (RPDM), a numerical model of HF is created, and a calculation formula for breakdown pressure during HF of CRL is established. The breakdown pressure obtained by these two methods is relatively consistent. Finally, the influence mechanism of porosity and confining stress on the hydraulic behavior of CRL is studied. Results indicate that the propagation direction of hydraulic fracture is related to porosity and confining stress. The interactions between pores and hydraulic fractures primarily include penetration, deflection, and obstruction. The presence of pores hinders the transmission of pore pressure, reducing the seepage capacity. With increasing porosity, CRL is more likely to develop macroscopic fractures, leading to fluctuations in water injection pressure. The fluctuations are related to the number of pores involved in crack propagation, pore volume, number of propagation paths, and path length. The breakdown pressure of CRL is affected by the stress on hole walls and confining stress. A higher breakdown pressure on hole walls indicates a greater stability of the surrounding rock under high hydraulic pressures. As for the initiation stress, it is influenced by the confining stress. As the confining stress increases, the breakdown pressure on hole walls increases. For non-uniform confining stress conditions, the breakdown pressure can be determined by the minimum confining stress.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"25 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of crack propagation and hydraulic fracturing behavior of coral reef limestone\",\"authors\":\"Tingting Liu, Yiqiang Shao, Chao Zhang, Xinping Li, Yi Luo, Xiaoqing Wei\",\"doi\":\"10.1007/s40571-024-00759-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the hydraulic fracturing (HF) characteristics of coral reef limestone (CRL) is of great significance for improving the mining efficiency of seabed energy (such as gas and oil) and ensuring the stability of rock masses in marine underground engineering. To investigate the crack evolution mechanism of CRL under hydraulic coupling, numerical simulations of HF on CRL are carried out using particle flow code (PFC). Firstly, a numerical model method based on two-dimensional particle flow code (PFC2D) is proposed to establish the random pore distribution model of CRL, and its effectiveness is verified through indoor experiments. Then, based on the random pore distribution method (RPDM), a numerical model of HF is created, and a calculation formula for breakdown pressure during HF of CRL is established. The breakdown pressure obtained by these two methods is relatively consistent. Finally, the influence mechanism of porosity and confining stress on the hydraulic behavior of CRL is studied. Results indicate that the propagation direction of hydraulic fracture is related to porosity and confining stress. The interactions between pores and hydraulic fractures primarily include penetration, deflection, and obstruction. The presence of pores hinders the transmission of pore pressure, reducing the seepage capacity. With increasing porosity, CRL is more likely to develop macroscopic fractures, leading to fluctuations in water injection pressure. The fluctuations are related to the number of pores involved in crack propagation, pore volume, number of propagation paths, and path length. The breakdown pressure of CRL is affected by the stress on hole walls and confining stress. A higher breakdown pressure on hole walls indicates a greater stability of the surrounding rock under high hydraulic pressures. As for the initiation stress, it is influenced by the confining stress. As the confining stress increases, the breakdown pressure on hole walls increases. For non-uniform confining stress conditions, the breakdown pressure can be determined by the minimum confining stress.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00759-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00759-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Analysis of crack propagation and hydraulic fracturing behavior of coral reef limestone
Understanding the hydraulic fracturing (HF) characteristics of coral reef limestone (CRL) is of great significance for improving the mining efficiency of seabed energy (such as gas and oil) and ensuring the stability of rock masses in marine underground engineering. To investigate the crack evolution mechanism of CRL under hydraulic coupling, numerical simulations of HF on CRL are carried out using particle flow code (PFC). Firstly, a numerical model method based on two-dimensional particle flow code (PFC2D) is proposed to establish the random pore distribution model of CRL, and its effectiveness is verified through indoor experiments. Then, based on the random pore distribution method (RPDM), a numerical model of HF is created, and a calculation formula for breakdown pressure during HF of CRL is established. The breakdown pressure obtained by these two methods is relatively consistent. Finally, the influence mechanism of porosity and confining stress on the hydraulic behavior of CRL is studied. Results indicate that the propagation direction of hydraulic fracture is related to porosity and confining stress. The interactions between pores and hydraulic fractures primarily include penetration, deflection, and obstruction. The presence of pores hinders the transmission of pore pressure, reducing the seepage capacity. With increasing porosity, CRL is more likely to develop macroscopic fractures, leading to fluctuations in water injection pressure. The fluctuations are related to the number of pores involved in crack propagation, pore volume, number of propagation paths, and path length. The breakdown pressure of CRL is affected by the stress on hole walls and confining stress. A higher breakdown pressure on hole walls indicates a greater stability of the surrounding rock under high hydraulic pressures. As for the initiation stress, it is influenced by the confining stress. As the confining stress increases, the breakdown pressure on hole walls increases. For non-uniform confining stress conditions, the breakdown pressure can be determined by the minimum confining stress.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.