SCIMAP:用于多路复用成像数据综合空间分析的 Python 工具包

Ajit J. Nirmal, Peter K. Sorger
{"title":"SCIMAP:用于多路复用成像数据综合空间分析的 Python 工具包","authors":"Ajit J. Nirmal, Peter K. Sorger","doi":"arxiv-2405.02076","DOIUrl":null,"url":null,"abstract":"Multiplexed imaging data are revolutionizing our understanding of the\ncomposition and organization of tissues and tumors. A critical aspect of such\ntissue profiling is quantifying the spatial relationship relationships among\ncells at different scales from the interaction of neighboring cells to\nrecurrent communities of cells of multiple types. This often involves\nstatistical analysis of 10^7 or more cells in which up to 100 biomolecules\n(commonly proteins) have been measured. While software tools currently cater to\nthe analysis of spatial transcriptomics data, there remains a need for toolkits\nexplicitly tailored to the complexities of multiplexed imaging data including\nthe need to seamlessly integrate image visualization with data analysis and\nexploration. We introduce SCIMAP, a Python package specifically crafted to\naddress these challenges. With SCIMAP, users can efficiently preprocess,\nanalyze, and visualize large datasets, facilitating the exploration of spatial\nrelationships and their statistical significance. SCIMAP's modular design\nenables the integration of new algorithms, enhancing its capabilities for\nspatial analysis.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCIMAP: A Python Toolkit for Integrated Spatial Analysis of Multiplexed Imaging Data\",\"authors\":\"Ajit J. Nirmal, Peter K. Sorger\",\"doi\":\"arxiv-2405.02076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiplexed imaging data are revolutionizing our understanding of the\\ncomposition and organization of tissues and tumors. A critical aspect of such\\ntissue profiling is quantifying the spatial relationship relationships among\\ncells at different scales from the interaction of neighboring cells to\\nrecurrent communities of cells of multiple types. This often involves\\nstatistical analysis of 10^7 or more cells in which up to 100 biomolecules\\n(commonly proteins) have been measured. While software tools currently cater to\\nthe analysis of spatial transcriptomics data, there remains a need for toolkits\\nexplicitly tailored to the complexities of multiplexed imaging data including\\nthe need to seamlessly integrate image visualization with data analysis and\\nexploration. We introduce SCIMAP, a Python package specifically crafted to\\naddress these challenges. With SCIMAP, users can efficiently preprocess,\\nanalyze, and visualize large datasets, facilitating the exploration of spatial\\nrelationships and their statistical significance. SCIMAP's modular design\\nenables the integration of new algorithms, enhancing its capabilities for\\nspatial analysis.\",\"PeriodicalId\":501572,\"journal\":{\"name\":\"arXiv - QuanBio - Tissues and Organs\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Tissues and Organs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多重成像数据正在彻底改变我们对组织和肿瘤的构成和组织的认识。这种组织图谱分析的一个重要方面是量化不同尺度细胞之间的空间关系,从相邻细胞的相互作用到多种类型细胞的经常性群落。这通常需要对多达 100 种生物大分子(通常是蛋白质)的 10^7 或更多细胞进行统计分析。虽然目前的软件工具可以满足空间转录组学数据分析的需要,但仍然需要专门针对多路复用成像数据的复杂性量身定制的工具包,包括将图像可视化与数据分析和探索无缝集成的需要。我们介绍了 SCIMAP,这是一个专为应对这些挑战而设计的 Python 软件包。有了 SCIMAP,用户可以高效地预处理、分析和可视化大型数据集,促进对空间关系及其统计意义的探索。SCIMAP 的模块化设计可以集成新的算法,从而增强其空间分析能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SCIMAP: A Python Toolkit for Integrated Spatial Analysis of Multiplexed Imaging Data
Multiplexed imaging data are revolutionizing our understanding of the composition and organization of tissues and tumors. A critical aspect of such tissue profiling is quantifying the spatial relationship relationships among cells at different scales from the interaction of neighboring cells to recurrent communities of cells of multiple types. This often involves statistical analysis of 10^7 or more cells in which up to 100 biomolecules (commonly proteins) have been measured. While software tools currently cater to the analysis of spatial transcriptomics data, there remains a need for toolkits explicitly tailored to the complexities of multiplexed imaging data including the need to seamlessly integrate image visualization with data analysis and exploration. We introduce SCIMAP, a Python package specifically crafted to address these challenges. With SCIMAP, users can efficiently preprocess, analyze, and visualize large datasets, facilitating the exploration of spatial relationships and their statistical significance. SCIMAP's modular design enables the integration of new algorithms, enhancing its capabilities for spatial analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1