用于电影推荐的 MTS Kion 隐含语境化序列数据集

Pub Date : 2024-03-25 DOI:10.1134/S1064562423701594
I. Safilo, D. Tikhonovich, A. V. Petrov, D. I. Ignatov
{"title":"用于电影推荐的 MTS Kion 隐含语境化序列数据集","authors":"I. Safilo,&nbsp;D. Tikhonovich,&nbsp;A. V. Petrov,&nbsp;D. I. Ignatov","doi":"10.1134/S1064562423701594","DOIUrl":null,"url":null,"abstract":"<p>We present a new movie and TV show recommendation dataset collected from the real users of MTS Kion video-on-demand platform. In contrast to other popular movie recommendation datasets, such as MovieLens or Netflix, our dataset is based on the implicit interactions registered at the watching time, rather than on explicit ratings. We also provide rich contextual and side information including interactions characteristics (such as temporal information, watch duration and watch percentage), user demographics and rich movies meta-information. In addition, we describe the MTS Kion Challenge—an online recommender systems challenge that was based on this dataset—and provide an overview of the best performing solutions of the winners. We keep the competition sandbox open, so the researchers are welcome to try their own recommendation algorithms and measure the quality on the private part of the dataset.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MTS Kion Implicit Contextualised Sequential Dataset for Movie Recommendation\",\"authors\":\"I. Safilo,&nbsp;D. Tikhonovich,&nbsp;A. V. Petrov,&nbsp;D. I. Ignatov\",\"doi\":\"10.1134/S1064562423701594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a new movie and TV show recommendation dataset collected from the real users of MTS Kion video-on-demand platform. In contrast to other popular movie recommendation datasets, such as MovieLens or Netflix, our dataset is based on the implicit interactions registered at the watching time, rather than on explicit ratings. We also provide rich contextual and side information including interactions characteristics (such as temporal information, watch duration and watch percentage), user demographics and rich movies meta-information. In addition, we describe the MTS Kion Challenge—an online recommender systems challenge that was based on this dataset—and provide an overview of the best performing solutions of the winners. We keep the competition sandbox open, so the researchers are welcome to try their own recommendation algorithms and measure the quality on the private part of the dataset.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提出了一个新的电影和电视节目推荐数据集,该数据集是从 MTS Kion 视频点播平台的真实用户中收集的。与 MovieLens 或 Netflix 等其他流行的电影推荐数据集不同,我们的数据集基于观看时记录的隐式交互,而非显式评分。我们还提供了丰富的上下文和侧面信息,包括互动特征(如时间信息、观看时长和观看百分比)、用户人口统计数据和丰富的电影元信息。此外,我们还介绍了 MTS Kion 挑战赛(基于该数据集的在线推荐系统挑战赛),并概述了优胜者的最佳解决方案。我们保持比赛沙盒的开放性,因此欢迎研究人员尝试自己的推荐算法,并在数据集的私有部分测量其质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
MTS Kion Implicit Contextualised Sequential Dataset for Movie Recommendation

We present a new movie and TV show recommendation dataset collected from the real users of MTS Kion video-on-demand platform. In contrast to other popular movie recommendation datasets, such as MovieLens or Netflix, our dataset is based on the implicit interactions registered at the watching time, rather than on explicit ratings. We also provide rich contextual and side information including interactions characteristics (such as temporal information, watch duration and watch percentage), user demographics and rich movies meta-information. In addition, we describe the MTS Kion Challenge—an online recommender systems challenge that was based on this dataset—and provide an overview of the best performing solutions of the winners. We keep the competition sandbox open, so the researchers are welcome to try their own recommendation algorithms and measure the quality on the private part of the dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1