Chahira Mahjoub, Monia Hamdi, Reem Ibrahim Alkanhel, Safa Mohamed, Ridha Ejbali
{"title":"对抗环境强化学习驱动的物联网入侵检测算法","authors":"Chahira Mahjoub, Monia Hamdi, Reem Ibrahim Alkanhel, Safa Mohamed, Ridha Ejbali","doi":"10.1186/s13638-024-02348-6","DOIUrl":null,"url":null,"abstract":"<p>The increasing prevalence of Internet of Things (IoT) systems has made them attractive targets for malicious actors. To address the evolving threats and the growing complexity of detection, there is a critical need to search for and develop new algorithms that are fast and robust in detecting and classifying dangerous network traffic. In this context, deep reinforcement learning (DRL) is gaining recognition as a prospective solution in numerous fields as it enables autonomous agents to cooperate with their environment for decision-making without relying on human experts. This article presents an innovative approach to intrusion detection in IoT systems using an adversarial reinforcement learning (RL) algorithm known for its exceptional predictive capabilities. The predictive process relies on a classifier, implemented as a streamlined and highly efficient neural network. Embedded within this classifier is a policy function meticulously trained using an innovative RL model. Importantly, this model ensures that the environment’s behavior is dynamically fine-tuned simultaneously with the learning process, improving the overall effectiveness of the intrusion detection approach. The efficiency of our proposal was assessed using the Bot-IoT database, consisting of a mixture of legitimate IoT network traffic and simulated attack scenarios. Our scheme shows superior performance compared to existing ones. Therefore, our approach to IoT intrusion detection can be considered a valuable alternative to existing methods, capable of significantly improving the IoT systems’ security.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"6 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adversarial environment reinforcement learning-driven intrusion detection algorithm for Internet of Things\",\"authors\":\"Chahira Mahjoub, Monia Hamdi, Reem Ibrahim Alkanhel, Safa Mohamed, Ridha Ejbali\",\"doi\":\"10.1186/s13638-024-02348-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing prevalence of Internet of Things (IoT) systems has made them attractive targets for malicious actors. To address the evolving threats and the growing complexity of detection, there is a critical need to search for and develop new algorithms that are fast and robust in detecting and classifying dangerous network traffic. In this context, deep reinforcement learning (DRL) is gaining recognition as a prospective solution in numerous fields as it enables autonomous agents to cooperate with their environment for decision-making without relying on human experts. This article presents an innovative approach to intrusion detection in IoT systems using an adversarial reinforcement learning (RL) algorithm known for its exceptional predictive capabilities. The predictive process relies on a classifier, implemented as a streamlined and highly efficient neural network. Embedded within this classifier is a policy function meticulously trained using an innovative RL model. Importantly, this model ensures that the environment’s behavior is dynamically fine-tuned simultaneously with the learning process, improving the overall effectiveness of the intrusion detection approach. The efficiency of our proposal was assessed using the Bot-IoT database, consisting of a mixture of legitimate IoT network traffic and simulated attack scenarios. Our scheme shows superior performance compared to existing ones. Therefore, our approach to IoT intrusion detection can be considered a valuable alternative to existing methods, capable of significantly improving the IoT systems’ security.</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-024-02348-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02348-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An adversarial environment reinforcement learning-driven intrusion detection algorithm for Internet of Things
The increasing prevalence of Internet of Things (IoT) systems has made them attractive targets for malicious actors. To address the evolving threats and the growing complexity of detection, there is a critical need to search for and develop new algorithms that are fast and robust in detecting and classifying dangerous network traffic. In this context, deep reinforcement learning (DRL) is gaining recognition as a prospective solution in numerous fields as it enables autonomous agents to cooperate with their environment for decision-making without relying on human experts. This article presents an innovative approach to intrusion detection in IoT systems using an adversarial reinforcement learning (RL) algorithm known for its exceptional predictive capabilities. The predictive process relies on a classifier, implemented as a streamlined and highly efficient neural network. Embedded within this classifier is a policy function meticulously trained using an innovative RL model. Importantly, this model ensures that the environment’s behavior is dynamically fine-tuned simultaneously with the learning process, improving the overall effectiveness of the intrusion detection approach. The efficiency of our proposal was assessed using the Bot-IoT database, consisting of a mixture of legitimate IoT network traffic and simulated attack scenarios. Our scheme shows superior performance compared to existing ones. Therefore, our approach to IoT intrusion detection can be considered a valuable alternative to existing methods, capable of significantly improving the IoT systems’ security.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.