Konrawut Khammahawong, Poom Kumam, Parin Chaipunya, Somyot Plubtieng
{"title":"哈达玛流形中伪单调变分不等式问题的新曾外梯度方法","authors":"Konrawut Khammahawong, Poom Kumam, Parin Chaipunya, Somyot Plubtieng","doi":"10.1186/s13663-021-00689-1","DOIUrl":null,"url":null,"abstract":"We propose Tseng’s extragradient methods for finding a solution of variational inequality problems associated with pseudomonotone vector fields in Hadamard manifolds. Under standard assumptions such as pseudomonotone and Lipschitz continuous vector fields, we prove that any sequence generated by the proposed methods converges to a solution of variational inequality problem, whenever it exits. Moreover, we give some numerical experiments to illustrate our main results.","PeriodicalId":12293,"journal":{"name":"Fixed Point Theory and Applications","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Tseng’s extragradient methods for pseudomonotone variational inequality problems in Hadamard manifolds\",\"authors\":\"Konrawut Khammahawong, Poom Kumam, Parin Chaipunya, Somyot Plubtieng\",\"doi\":\"10.1186/s13663-021-00689-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Tseng’s extragradient methods for finding a solution of variational inequality problems associated with pseudomonotone vector fields in Hadamard manifolds. Under standard assumptions such as pseudomonotone and Lipschitz continuous vector fields, we prove that any sequence generated by the proposed methods converges to a solution of variational inequality problem, whenever it exits. Moreover, we give some numerical experiments to illustrate our main results.\",\"PeriodicalId\":12293,\"journal\":{\"name\":\"Fixed Point Theory and Applications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed Point Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13663-021-00689-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-021-00689-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Tseng’s extragradient methods for pseudomonotone variational inequality problems in Hadamard manifolds
We propose Tseng’s extragradient methods for finding a solution of variational inequality problems associated with pseudomonotone vector fields in Hadamard manifolds. Under standard assumptions such as pseudomonotone and Lipschitz continuous vector fields, we prove that any sequence generated by the proposed methods converges to a solution of variational inequality problem, whenever it exits. Moreover, we give some numerical experiments to illustrate our main results.
期刊介绍:
In a wide range of mathematical, computational, economical, modeling and engineering problems, the existence of a solution to a theoretical or real world problem is equivalent to the existence of a fixed point for a suitable map or operator. Fixed points are therefore of paramount importance in many areas of mathematics, sciences and engineering.
The theory itself is a beautiful mixture of analysis (pure and applied), topology and geometry. Over the last 60 years or so, the theory of fixed points has been revealed as a very powerful and important tool in the study of nonlinear phenomena. In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry, physics, engineering, game theory and economics.
In numerous cases finding the exact solution is not possible; hence it is necessary to develop appropriate algorithms to approximate the requested result. This is strongly related to control and optimization problems arising in the different sciences and in engineering problems. Many situations in the study of nonlinear equations, calculus of variations, partial differential equations, optimal control and inverse problems can be formulated in terms of fixed point problems or optimization.