POPDG:使用 PopDanceSet 生成流行 3D 舞蹈

Zhenye Luo, Min Ren, Xuecai Hu, Yongzhen Huang, Li Yao
{"title":"POPDG:使用 PopDanceSet 生成流行 3D 舞蹈","authors":"Zhenye Luo, Min Ren, Xuecai Hu, Yongzhen Huang, Li Yao","doi":"arxiv-2405.03178","DOIUrl":null,"url":null,"abstract":"Generating dances that are both lifelike and well-aligned with music\ncontinues to be a challenging task in the cross-modal domain. This paper\nintroduces PopDanceSet, the first dataset tailored to the preferences of young\naudiences, enabling the generation of aesthetically oriented dances. And it\nsurpasses the AIST++ dataset in music genre diversity and the intricacy and\ndepth of dance movements. Moreover, the proposed POPDG model within the iDDPM\nframework enhances dance diversity and, through the Space Augmentation\nAlgorithm, strengthens spatial physical connections between human body joints,\nensuring that increased diversity does not compromise generation quality. A\nstreamlined Alignment Module is also designed to improve the temporal alignment\nbetween dance and music. Extensive experiments show that POPDG achieves SOTA\nresults on two datasets. Furthermore, the paper also expands on current\nevaluation metrics. The dataset and code are available at\nhttps://github.com/Luke-Luo1/POPDG.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POPDG: Popular 3D Dance Generation with PopDanceSet\",\"authors\":\"Zhenye Luo, Min Ren, Xuecai Hu, Yongzhen Huang, Li Yao\",\"doi\":\"arxiv-2405.03178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating dances that are both lifelike and well-aligned with music\\ncontinues to be a challenging task in the cross-modal domain. This paper\\nintroduces PopDanceSet, the first dataset tailored to the preferences of young\\naudiences, enabling the generation of aesthetically oriented dances. And it\\nsurpasses the AIST++ dataset in music genre diversity and the intricacy and\\ndepth of dance movements. Moreover, the proposed POPDG model within the iDDPM\\nframework enhances dance diversity and, through the Space Augmentation\\nAlgorithm, strengthens spatial physical connections between human body joints,\\nensuring that increased diversity does not compromise generation quality. A\\nstreamlined Alignment Module is also designed to improve the temporal alignment\\nbetween dance and music. Extensive experiments show that POPDG achieves SOTA\\nresults on two datasets. Furthermore, the paper also expands on current\\nevaluation metrics. The dataset and code are available at\\nhttps://github.com/Luke-Luo1/POPDG.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在跨模态领域,生成既逼真又与音乐完美契合的舞蹈仍然是一项具有挑战性的任务。本文介绍了 PopDanceSet,它是第一个根据年轻观众的喜好量身定制的数据集,可以生成以美学为导向的舞蹈。该数据集在音乐流派多样性以及舞蹈动作的复杂性和深度方面超越了 AIST++ 数据集。此外,在 iDDPM 框架内提出的 POPDG 模型增强了舞蹈的多样性,并通过空间增强算法加强了人体关节之间的空间物理连接,确保在增加多样性的同时不影响生成质量。此外,还设计了一个简化的对齐模块,以改进舞蹈与音乐之间的时间对齐。广泛的实验表明,POPDG 在两个数据集上取得了 SOTA 的结果。此外,本文还扩展了当前的评估指标。数据集和代码可在https://github.com/Luke-Luo1/POPDG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POPDG: Popular 3D Dance Generation with PopDanceSet
Generating dances that are both lifelike and well-aligned with music continues to be a challenging task in the cross-modal domain. This paper introduces PopDanceSet, the first dataset tailored to the preferences of young audiences, enabling the generation of aesthetically oriented dances. And it surpasses the AIST++ dataset in music genre diversity and the intricacy and depth of dance movements. Moreover, the proposed POPDG model within the iDDPM framework enhances dance diversity and, through the Space Augmentation Algorithm, strengthens spatial physical connections between human body joints, ensuring that increased diversity does not compromise generation quality. A streamlined Alignment Module is also designed to improve the temporal alignment between dance and music. Extensive experiments show that POPDG achieves SOTA results on two datasets. Furthermore, the paper also expands on current evaluation metrics. The dataset and code are available at https://github.com/Luke-Luo1/POPDG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1