{"title":"盐混合物对 PEG 35000 组成的水性两相体系的影响:实验与相关性","authors":"Hossein Dashti Khavidaki, Zahra Asadi, Alireza Salabat","doi":"10.1007/s10953-024-01381-9","DOIUrl":null,"url":null,"abstract":"<div><p>An aqueous two-phase system (ATPS) composed of PEG35000, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, and their mixtures at 298 K was studied. The liquid–liquid equilibrium (LLE) of these systems, including binodal curves, tie-lines, tie-line length, and slope of the tie-line, were obtained. Additionally, for the first time, salt mixtures with different initial mass ratios of 1:3, 1:1, and 3:1 were used to prepare the aqueous two-phase systems. The effect of electrolyte and salting-out power for these systems was examined and compared. Consistent with the literature, it was found that the salting-out power of Na<sup>+</sup> is higher than that of the K<sup>+</sup> cation. Furthermore, in Na<sub>2</sub>CO<sub>3</sub> and K<sub>2</sub>CO<sub>3</sub> mixtures, increasing the amount of sodium ions resulted in stronger salting-out power. The LLE data was correlated with the Othmer-Tobias, Bancroft, and Setschenow models, and good agreement was found with all three models.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Salt Mixtures on Aqueous Two-Phase System Composed of PEG 35000: Experiment and Correlation\",\"authors\":\"Hossein Dashti Khavidaki, Zahra Asadi, Alireza Salabat\",\"doi\":\"10.1007/s10953-024-01381-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An aqueous two-phase system (ATPS) composed of PEG35000, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, and their mixtures at 298 K was studied. The liquid–liquid equilibrium (LLE) of these systems, including binodal curves, tie-lines, tie-line length, and slope of the tie-line, were obtained. Additionally, for the first time, salt mixtures with different initial mass ratios of 1:3, 1:1, and 3:1 were used to prepare the aqueous two-phase systems. The effect of electrolyte and salting-out power for these systems was examined and compared. Consistent with the literature, it was found that the salting-out power of Na<sup>+</sup> is higher than that of the K<sup>+</sup> cation. Furthermore, in Na<sub>2</sub>CO<sub>3</sub> and K<sub>2</sub>CO<sub>3</sub> mixtures, increasing the amount of sodium ions resulted in stronger salting-out power. The LLE data was correlated with the Othmer-Tobias, Bancroft, and Setschenow models, and good agreement was found with all three models.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-024-01381-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01381-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of Salt Mixtures on Aqueous Two-Phase System Composed of PEG 35000: Experiment and Correlation
An aqueous two-phase system (ATPS) composed of PEG35000, Na2CO3, K2CO3, and their mixtures at 298 K was studied. The liquid–liquid equilibrium (LLE) of these systems, including binodal curves, tie-lines, tie-line length, and slope of the tie-line, were obtained. Additionally, for the first time, salt mixtures with different initial mass ratios of 1:3, 1:1, and 3:1 were used to prepare the aqueous two-phase systems. The effect of electrolyte and salting-out power for these systems was examined and compared. Consistent with the literature, it was found that the salting-out power of Na+ is higher than that of the K+ cation. Furthermore, in Na2CO3 and K2CO3 mixtures, increasing the amount of sodium ions resulted in stronger salting-out power. The LLE data was correlated with the Othmer-Tobias, Bancroft, and Setschenow models, and good agreement was found with all three models.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.