{"title":"时间逼近的艺术:对经济学中离散和连续时间问题数值解决方案的研究","authors":"Keyvan Eslami, Thomas Phelan","doi":"10.1007/s10614-024-10596-3","DOIUrl":null,"url":null,"abstract":"<p>A recent literature within quantitative macroeconomics has advocated the use of continuous-time methods for dynamic programming problems. In this paper we explore the relative merits of continuous-time and discrete-time methods within the context of stationary and nonstationary income fluctuation problems. For stationary problems in two dimensions, the continuous-time approach is both more stable and typically faster than the discrete-time approach for any given level of accuracy. In contrast, for concave lifecycle problems (in which age or time enters explicitly), simply iterating backwards from the terminal date in discrete time is superior to any continuous-time algorithm. However, we also show that the continuous-time framework can easily incorporate nonconvexities and multiple controls—complications that often require either problem-specific ingenuity or nonlinear root-finding in the discrete-time context. In general, neither approach unequivocally dominates the other, making the choice of one over the other an art, rather than an exact science.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"33 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Art of Temporal Approximation: An Investigation into Numerical Solutions to Discrete- and Continuous-Time Problems in Economics\",\"authors\":\"Keyvan Eslami, Thomas Phelan\",\"doi\":\"10.1007/s10614-024-10596-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A recent literature within quantitative macroeconomics has advocated the use of continuous-time methods for dynamic programming problems. In this paper we explore the relative merits of continuous-time and discrete-time methods within the context of stationary and nonstationary income fluctuation problems. For stationary problems in two dimensions, the continuous-time approach is both more stable and typically faster than the discrete-time approach for any given level of accuracy. In contrast, for concave lifecycle problems (in which age or time enters explicitly), simply iterating backwards from the terminal date in discrete time is superior to any continuous-time algorithm. However, we also show that the continuous-time framework can easily incorporate nonconvexities and multiple controls—complications that often require either problem-specific ingenuity or nonlinear root-finding in the discrete-time context. In general, neither approach unequivocally dominates the other, making the choice of one over the other an art, rather than an exact science.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10596-3\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10596-3","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
The Art of Temporal Approximation: An Investigation into Numerical Solutions to Discrete- and Continuous-Time Problems in Economics
A recent literature within quantitative macroeconomics has advocated the use of continuous-time methods for dynamic programming problems. In this paper we explore the relative merits of continuous-time and discrete-time methods within the context of stationary and nonstationary income fluctuation problems. For stationary problems in two dimensions, the continuous-time approach is both more stable and typically faster than the discrete-time approach for any given level of accuracy. In contrast, for concave lifecycle problems (in which age or time enters explicitly), simply iterating backwards from the terminal date in discrete time is superior to any continuous-time algorithm. However, we also show that the continuous-time framework can easily incorporate nonconvexities and multiple controls—complications that often require either problem-specific ingenuity or nonlinear root-finding in the discrete-time context. In general, neither approach unequivocally dominates the other, making the choice of one over the other an art, rather than an exact science.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing