Michael Stenger, Robert Leppich, Ian Foster, Samuel Kounev, André Bauer
{"title":"评估是关键:关于合成时间序列评估措施的调查","authors":"Michael Stenger, Robert Leppich, Ian Foster, Samuel Kounev, André Bauer","doi":"10.1186/s40537-024-00924-7","DOIUrl":null,"url":null,"abstract":"<p>Synthetic data generation describes the process of learning the underlying distribution of a given real dataset in a model, which is, in turn, sampled to produce new data objects still adhering to the original distribution. This approach often finds application where circumstances limit the availability or usability of real-world datasets, for instance, in health care due to privacy concerns. While image synthesis has received much attention in the past, time series are key for many practical (e.g., industrial) applications. To date, numerous different generative models and measures to evaluate time series syntheses have been proposed. However, regarding the defining features of high-quality synthetic time series and how to quantify quality, no consensus has yet been reached among researchers. Hence, we propose a comprehensive survey on evaluation measures for time series generation to assist users in evaluating synthetic time series. For one, we provide brief descriptions or - where applicable - precise definitions. Further, we order the measures in a taxonomy and examine applicability and usage. To assist in the selection of the most appropriate measures, we provide a concise guide for fast lookup. Notably, our findings reveal a lack of a universally accepted approach for an evaluation procedure, including the selection of appropriate measures. We believe this situation hinders progress and may even erode evaluation standards to a “do as you like”-approach to synthetic data evaluation. Therefore, this survey is a preliminary step to advance the field of synthetic data evaluation.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"28 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation is key: a survey on evaluation measures for synthetic time series\",\"authors\":\"Michael Stenger, Robert Leppich, Ian Foster, Samuel Kounev, André Bauer\",\"doi\":\"10.1186/s40537-024-00924-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthetic data generation describes the process of learning the underlying distribution of a given real dataset in a model, which is, in turn, sampled to produce new data objects still adhering to the original distribution. This approach often finds application where circumstances limit the availability or usability of real-world datasets, for instance, in health care due to privacy concerns. While image synthesis has received much attention in the past, time series are key for many practical (e.g., industrial) applications. To date, numerous different generative models and measures to evaluate time series syntheses have been proposed. However, regarding the defining features of high-quality synthetic time series and how to quantify quality, no consensus has yet been reached among researchers. Hence, we propose a comprehensive survey on evaluation measures for time series generation to assist users in evaluating synthetic time series. For one, we provide brief descriptions or - where applicable - precise definitions. Further, we order the measures in a taxonomy and examine applicability and usage. To assist in the selection of the most appropriate measures, we provide a concise guide for fast lookup. Notably, our findings reveal a lack of a universally accepted approach for an evaluation procedure, including the selection of appropriate measures. We believe this situation hinders progress and may even erode evaluation standards to a “do as you like”-approach to synthetic data evaluation. Therefore, this survey is a preliminary step to advance the field of synthetic data evaluation.</p>\",\"PeriodicalId\":15158,\"journal\":{\"name\":\"Journal of Big Data\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s40537-024-00924-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00924-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Evaluation is key: a survey on evaluation measures for synthetic time series
Synthetic data generation describes the process of learning the underlying distribution of a given real dataset in a model, which is, in turn, sampled to produce new data objects still adhering to the original distribution. This approach often finds application where circumstances limit the availability or usability of real-world datasets, for instance, in health care due to privacy concerns. While image synthesis has received much attention in the past, time series are key for many practical (e.g., industrial) applications. To date, numerous different generative models and measures to evaluate time series syntheses have been proposed. However, regarding the defining features of high-quality synthetic time series and how to quantify quality, no consensus has yet been reached among researchers. Hence, we propose a comprehensive survey on evaluation measures for time series generation to assist users in evaluating synthetic time series. For one, we provide brief descriptions or - where applicable - precise definitions. Further, we order the measures in a taxonomy and examine applicability and usage. To assist in the selection of the most appropriate measures, we provide a concise guide for fast lookup. Notably, our findings reveal a lack of a universally accepted approach for an evaluation procedure, including the selection of appropriate measures. We believe this situation hinders progress and may even erode evaluation standards to a “do as you like”-approach to synthetic data evaluation. Therefore, this survey is a preliminary step to advance the field of synthetic data evaluation.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.