{"title":"施用生物炭提高抗逆性,促进作物生长","authors":"Wenchen Chi, Qiong Nan, Yuxue Liu, Da Dong, Yong Qin, Shengjie Li, Weixiang Wu","doi":"10.1007/s42773-024-00336-z","DOIUrl":null,"url":null,"abstract":"<p>Environmental stressors such as drought, salinity, and heavy metals pose significant obstacles to achieving sustainable food security, necessitating the development of universally applicable and cost-effective solutions to ameliorate soil under stress. Biochar, an eco-friendly material to increase crop yield, has been researched for almost two decades and has great potential for global use in enhancing stress resistance. However, there hasn't been comprehensive research on the impact of biochar application on soil properties, and root and crop growth. To optimize and promote biochar application in agriculture under stress, this study integrates over 100 peer-reviewed articles to explain how biochar promotes crop growth by enhancing soil resistance to stress. Biochar's distinctive properties, such as porous structure, alkaline nature, enriched surface functional groups, and nutrient content, are responsible for the following soil environment benefits: improved soil physiochemical properties, increased nutrient cycling, and boosted microbial growth. Moreover, the research emphasizes that the enhanced stress resistance of biochar optimizes nutrient absorption, alleviates soil pollutants, and thereby enhances overall crop productivity. The study discusses the roles and mechanisms of biochar on soil under stress, as well as the challenges linked to the sustainable and economical implementation of biochar in extreme soil conditions. This review aims to provide a theoretical basis for the widespread and cost-effective use of biochar in improving soil under stresses, thereby enhancing soil health and food security.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"150 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress resistance enhancing with biochar application and promotion on crop growth\",\"authors\":\"Wenchen Chi, Qiong Nan, Yuxue Liu, Da Dong, Yong Qin, Shengjie Li, Weixiang Wu\",\"doi\":\"10.1007/s42773-024-00336-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Environmental stressors such as drought, salinity, and heavy metals pose significant obstacles to achieving sustainable food security, necessitating the development of universally applicable and cost-effective solutions to ameliorate soil under stress. Biochar, an eco-friendly material to increase crop yield, has been researched for almost two decades and has great potential for global use in enhancing stress resistance. However, there hasn't been comprehensive research on the impact of biochar application on soil properties, and root and crop growth. To optimize and promote biochar application in agriculture under stress, this study integrates over 100 peer-reviewed articles to explain how biochar promotes crop growth by enhancing soil resistance to stress. Biochar's distinctive properties, such as porous structure, alkaline nature, enriched surface functional groups, and nutrient content, are responsible for the following soil environment benefits: improved soil physiochemical properties, increased nutrient cycling, and boosted microbial growth. Moreover, the research emphasizes that the enhanced stress resistance of biochar optimizes nutrient absorption, alleviates soil pollutants, and thereby enhances overall crop productivity. The study discusses the roles and mechanisms of biochar on soil under stress, as well as the challenges linked to the sustainable and economical implementation of biochar in extreme soil conditions. This review aims to provide a theoretical basis for the widespread and cost-effective use of biochar in improving soil under stresses, thereby enhancing soil health and food security.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00336-z\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00336-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Stress resistance enhancing with biochar application and promotion on crop growth
Environmental stressors such as drought, salinity, and heavy metals pose significant obstacles to achieving sustainable food security, necessitating the development of universally applicable and cost-effective solutions to ameliorate soil under stress. Biochar, an eco-friendly material to increase crop yield, has been researched for almost two decades and has great potential for global use in enhancing stress resistance. However, there hasn't been comprehensive research on the impact of biochar application on soil properties, and root and crop growth. To optimize and promote biochar application in agriculture under stress, this study integrates over 100 peer-reviewed articles to explain how biochar promotes crop growth by enhancing soil resistance to stress. Biochar's distinctive properties, such as porous structure, alkaline nature, enriched surface functional groups, and nutrient content, are responsible for the following soil environment benefits: improved soil physiochemical properties, increased nutrient cycling, and boosted microbial growth. Moreover, the research emphasizes that the enhanced stress resistance of biochar optimizes nutrient absorption, alleviates soil pollutants, and thereby enhances overall crop productivity. The study discusses the roles and mechanisms of biochar on soil under stress, as well as the challenges linked to the sustainable and economical implementation of biochar in extreme soil conditions. This review aims to provide a theoretical basis for the widespread and cost-effective use of biochar in improving soil under stresses, thereby enhancing soil health and food security.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.