{"title":"TLCE:基于迁移学习的分类器集合,用于少镜头分类增量学习","authors":"Shuangmei Wang, Yang Cao, Tieru Wu","doi":"10.1007/s11063-024-11605-0","DOIUrl":null,"url":null,"abstract":"<p>Few-shot class-incremental learning (FSCIL) struggles to incrementally recognize novel classes from few examples without catastrophic forgetting of old classes or overfitting to new classes. We propose TLCE, which ensembles multiple pre-trained models to improve separation of novel and old classes. Specifically, we use episodic training to map images from old classes to quasi-orthogonal prototypes, which minimizes interference between old and new classes. Then, we incorporate the use of ensembling diverse pre-trained models to further tackle the challenge of data imbalance and enhance adaptation to novel classes. Extensive experiments on various datasets demonstrate that our transfer learning ensemble approach outperforms state-of-the-art FSCIL methods.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"12 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TLCE: Transfer-Learning Based Classifier Ensembles for Few-Shot Class-Incremental Learning\",\"authors\":\"Shuangmei Wang, Yang Cao, Tieru Wu\",\"doi\":\"10.1007/s11063-024-11605-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Few-shot class-incremental learning (FSCIL) struggles to incrementally recognize novel classes from few examples without catastrophic forgetting of old classes or overfitting to new classes. We propose TLCE, which ensembles multiple pre-trained models to improve separation of novel and old classes. Specifically, we use episodic training to map images from old classes to quasi-orthogonal prototypes, which minimizes interference between old and new classes. Then, we incorporate the use of ensembling diverse pre-trained models to further tackle the challenge of data imbalance and enhance adaptation to novel classes. Extensive experiments on various datasets demonstrate that our transfer learning ensemble approach outperforms state-of-the-art FSCIL methods.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11605-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11605-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
TLCE: Transfer-Learning Based Classifier Ensembles for Few-Shot Class-Incremental Learning
Few-shot class-incremental learning (FSCIL) struggles to incrementally recognize novel classes from few examples without catastrophic forgetting of old classes or overfitting to new classes. We propose TLCE, which ensembles multiple pre-trained models to improve separation of novel and old classes. Specifically, we use episodic training to map images from old classes to quasi-orthogonal prototypes, which minimizes interference between old and new classes. Then, we incorporate the use of ensembling diverse pre-trained models to further tackle the challenge of data imbalance and enhance adaptation to novel classes. Extensive experiments on various datasets demonstrate that our transfer learning ensemble approach outperforms state-of-the-art FSCIL methods.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters