从形态学角度洞察菱锰矿床的三维复杂性

IF 2.1 3区 生物学 Q2 MARINE & FRESHWATER BIOLOGY Marine Biology Pub Date : 2024-05-03 DOI:10.1007/s00227-024-04437-y
Andrea Cabrito, Silvia de Juan, Hilmar Hinz, Francesc Maynou
{"title":"从形态学角度洞察菱锰矿床的三维复杂性","authors":"Andrea Cabrito, Silvia de Juan, Hilmar Hinz, Francesc Maynou","doi":"10.1007/s00227-024-04437-y","DOIUrl":null,"url":null,"abstract":"<p>The ecological importance of rhodolith beds stems from their role as structurally complex three-dimensional habitat formed by free-living red calcareous algae. Their structural singularity is due to the great variety of complex and branching morphologies exhibited by rhodoliths that create interstitial spaces and increase their surface area. This increases the ecological niches for cryptofauna and provide refuge for a high number of organisms, which is why rhodolith beds are considered biodiversity hotspots. In this work, we studied a rhodolith bed located in the Menorca Channel, formed by several species of red calcareous algae that exhibit a great variety of morphologies and form an extensive and heterogeneous habitat. This study explored the morphological diversity of the rhodolith bed, comparing the ‘Core Habitat’ (within the center of the bed with the highest densities of rhodoliths) with the boundaries or ‘Adjacent Habitat’ where rhodolith density was lower. Our results show that all rhodolith growth forms (branched, pralines and boxwork) in the Core Habitat had higher interstitial space and were larger than the ones from adjacent zones. Moreover, we explored the three-dimensional techniques to study the morphological characteristics that have historically been studied in two dimensions. This study contributes to the knowledge of morphological diversity in well-preserved rhodolith beds from continental shelves in the western Mediterranean Sea and reinforces the use of three-dimensional measurements, specifically the interstitial space of branched rhodoliths, to provide more accurate data on habitat complexity.</p>","PeriodicalId":18365,"journal":{"name":"Marine Biology","volume":"63 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological insights into the three-dimensional complexity of rhodolith beds\",\"authors\":\"Andrea Cabrito, Silvia de Juan, Hilmar Hinz, Francesc Maynou\",\"doi\":\"10.1007/s00227-024-04437-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ecological importance of rhodolith beds stems from their role as structurally complex three-dimensional habitat formed by free-living red calcareous algae. Their structural singularity is due to the great variety of complex and branching morphologies exhibited by rhodoliths that create interstitial spaces and increase their surface area. This increases the ecological niches for cryptofauna and provide refuge for a high number of organisms, which is why rhodolith beds are considered biodiversity hotspots. In this work, we studied a rhodolith bed located in the Menorca Channel, formed by several species of red calcareous algae that exhibit a great variety of morphologies and form an extensive and heterogeneous habitat. This study explored the morphological diversity of the rhodolith bed, comparing the ‘Core Habitat’ (within the center of the bed with the highest densities of rhodoliths) with the boundaries or ‘Adjacent Habitat’ where rhodolith density was lower. Our results show that all rhodolith growth forms (branched, pralines and boxwork) in the Core Habitat had higher interstitial space and were larger than the ones from adjacent zones. Moreover, we explored the three-dimensional techniques to study the morphological characteristics that have historically been studied in two dimensions. This study contributes to the knowledge of morphological diversity in well-preserved rhodolith beds from continental shelves in the western Mediterranean Sea and reinforces the use of three-dimensional measurements, specifically the interstitial space of branched rhodoliths, to provide more accurate data on habitat complexity.</p>\",\"PeriodicalId\":18365,\"journal\":{\"name\":\"Marine Biology\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00227-024-04437-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00227-024-04437-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

菱锰矿床的生态重要性源于其作为由自由生活的红色钙质藻类形成的结构复杂的三维栖息地的作用。其结构的独特性在于菱锰矿呈现出多种复杂的分支形态,从而形成了间隙空间并增加了表面积。这增加了隐栖动物的生态位,为大量生物提供了避难所,这也是为什么菱锰矿床被认为是生物多样性热点的原因。在这项工作中,我们研究了位于梅诺卡海峡的一个红石床,该红石床由多种红色钙质藻类组成,形态各异,形成了一个广泛的异质栖息地。这项研究探讨了红石床的形态多样性,比较了 "核心栖息地"(位于红石床中心,红石密度最高)和红石密度较低的边界或 "邻近栖息地"。我们的研究结果表明,与邻近区域的红柱石相比,核心栖息地的所有红柱石生长形式(枝状、棱柱状和盒状)都具有更大的间隙空间和更大的体积。此外,我们还探索了三维技术,以研究历来以二维方式研究的形态特征。这项研究有助于了解地中海西部大陆架保存完好的菱铁矿床的形态多样性,并加强了三维测量的使用,特别是分枝菱铁矿的间隙空间,以提供更准确的生境复杂性数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphological insights into the three-dimensional complexity of rhodolith beds

The ecological importance of rhodolith beds stems from their role as structurally complex three-dimensional habitat formed by free-living red calcareous algae. Their structural singularity is due to the great variety of complex and branching morphologies exhibited by rhodoliths that create interstitial spaces and increase their surface area. This increases the ecological niches for cryptofauna and provide refuge for a high number of organisms, which is why rhodolith beds are considered biodiversity hotspots. In this work, we studied a rhodolith bed located in the Menorca Channel, formed by several species of red calcareous algae that exhibit a great variety of morphologies and form an extensive and heterogeneous habitat. This study explored the morphological diversity of the rhodolith bed, comparing the ‘Core Habitat’ (within the center of the bed with the highest densities of rhodoliths) with the boundaries or ‘Adjacent Habitat’ where rhodolith density was lower. Our results show that all rhodolith growth forms (branched, pralines and boxwork) in the Core Habitat had higher interstitial space and were larger than the ones from adjacent zones. Moreover, we explored the three-dimensional techniques to study the morphological characteristics that have historically been studied in two dimensions. This study contributes to the knowledge of morphological diversity in well-preserved rhodolith beds from continental shelves in the western Mediterranean Sea and reinforces the use of three-dimensional measurements, specifically the interstitial space of branched rhodoliths, to provide more accurate data on habitat complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Biology
Marine Biology 生物-海洋与淡水生物学
CiteScore
4.20
自引率
8.30%
发文量
133
审稿时长
3-6 weeks
期刊介绍: Marine Biology publishes original and internationally significant contributions from all fields of marine biology. Special emphasis is given to articles which promote the understanding of life in the sea, organism-environment interactions, interactions between organisms, and the functioning of the marine biosphere.
期刊最新文献
Collective exploitation of large prey by group foraging shapes aggregation and fitness of cnidarian polyps Reviewing theory, design, and analysis of tethering experiments to enhance our understanding of predation The complete mitochondrial genome of the extinct Caribbean monk seal (Neomonachus tropicalis) confirms its taxonomic position and the monophyly of the genus Neomonachus Individual performance niches and responses to winter temperature change in three estuarine fishes from eastern Australia The intensity of a field simulated marine heat wave differentially modulates the transcriptome expression of Posidonia oceanica from warm and cold environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1