确定非凸随机函数所有最优值的多开始算法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-07 DOI:10.1007/s11590-024-02114-z
Prateek Jaiswal, Jeffrey Larson
{"title":"确定非凸随机函数所有最优值的多开始算法","authors":"Prateek Jaiswal, Jeffrey Larson","doi":"10.1007/s11590-024-02114-z","DOIUrl":null,"url":null,"abstract":"<p>We propose a multistart algorithm to identify all local minima of a constrained, nonconvex stochastic optimization problem. The algorithm uniformly samples points in the domain and then starts a local stochastic optimization run from any point that is the “probabilistically best” point in its neighborhood. Under certain conditions, our algorithm is shown to asymptotically identify all local optima with high probability; this holds even though our algorithm is shown to almost surely start only finitely many local stochastic optimization runs. We demonstrate the performance of an implementation of our algorithm on nonconvex stochastic optimization problems, including identifying optimal variational parameters for the quantum approximate optimization algorithm.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistart algorithm for identifying all optima of nonconvex stochastic functions\",\"authors\":\"Prateek Jaiswal, Jeffrey Larson\",\"doi\":\"10.1007/s11590-024-02114-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a multistart algorithm to identify all local minima of a constrained, nonconvex stochastic optimization problem. The algorithm uniformly samples points in the domain and then starts a local stochastic optimization run from any point that is the “probabilistically best” point in its neighborhood. Under certain conditions, our algorithm is shown to asymptotically identify all local optima with high probability; this holds even though our algorithm is shown to almost surely start only finitely many local stochastic optimization runs. We demonstrate the performance of an implementation of our algorithm on nonconvex stochastic optimization problems, including identifying optimal variational parameters for the quantum approximate optimization algorithm.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-024-02114-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02114-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种多起点算法,用于识别受约束非凸随机优化问题的所有局部最小值。该算法对域中的点进行均匀采样,然后从其邻域中 "概率上最佳 "的任意点开始局部随机优化运行。在某些条件下,我们的算法被证明能以高概率渐近地识别所有局部最优点;即使我们的算法几乎肯定只能启动有限次局部随机优化运行,这一点仍然成立。我们演示了在非凸随机优化问题上实现我们算法的性能,包括确定量子近似优化算法的最优变分参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multistart algorithm for identifying all optima of nonconvex stochastic functions

We propose a multistart algorithm to identify all local minima of a constrained, nonconvex stochastic optimization problem. The algorithm uniformly samples points in the domain and then starts a local stochastic optimization run from any point that is the “probabilistically best” point in its neighborhood. Under certain conditions, our algorithm is shown to asymptotically identify all local optima with high probability; this holds even though our algorithm is shown to almost surely start only finitely many local stochastic optimization runs. We demonstrate the performance of an implementation of our algorithm on nonconvex stochastic optimization problems, including identifying optimal variational parameters for the quantum approximate optimization algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1