{"title":"确定非凸随机函数所有最优值的多开始算法","authors":"Prateek Jaiswal, Jeffrey Larson","doi":"10.1007/s11590-024-02114-z","DOIUrl":null,"url":null,"abstract":"<p>We propose a multistart algorithm to identify all local minima of a constrained, nonconvex stochastic optimization problem. The algorithm uniformly samples points in the domain and then starts a local stochastic optimization run from any point that is the “probabilistically best” point in its neighborhood. Under certain conditions, our algorithm is shown to asymptotically identify all local optima with high probability; this holds even though our algorithm is shown to almost surely start only finitely many local stochastic optimization runs. We demonstrate the performance of an implementation of our algorithm on nonconvex stochastic optimization problems, including identifying optimal variational parameters for the quantum approximate optimization algorithm.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistart algorithm for identifying all optima of nonconvex stochastic functions\",\"authors\":\"Prateek Jaiswal, Jeffrey Larson\",\"doi\":\"10.1007/s11590-024-02114-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a multistart algorithm to identify all local minima of a constrained, nonconvex stochastic optimization problem. The algorithm uniformly samples points in the domain and then starts a local stochastic optimization run from any point that is the “probabilistically best” point in its neighborhood. Under certain conditions, our algorithm is shown to asymptotically identify all local optima with high probability; this holds even though our algorithm is shown to almost surely start only finitely many local stochastic optimization runs. We demonstrate the performance of an implementation of our algorithm on nonconvex stochastic optimization problems, including identifying optimal variational parameters for the quantum approximate optimization algorithm.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-024-02114-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02114-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multistart algorithm for identifying all optima of nonconvex stochastic functions
We propose a multistart algorithm to identify all local minima of a constrained, nonconvex stochastic optimization problem. The algorithm uniformly samples points in the domain and then starts a local stochastic optimization run from any point that is the “probabilistically best” point in its neighborhood. Under certain conditions, our algorithm is shown to asymptotically identify all local optima with high probability; this holds even though our algorithm is shown to almost surely start only finitely many local stochastic optimization runs. We demonstrate the performance of an implementation of our algorithm on nonconvex stochastic optimization problems, including identifying optimal variational parameters for the quantum approximate optimization algorithm.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.