{"title":"最小化一般参数密度模型的稳健密度幂基发散","authors":"Akifumi Okuno","doi":"10.1007/s10463-024-00906-9","DOIUrl":null,"url":null,"abstract":"<div><p>Density power divergence (DPD) is designed to robustly estimate the underlying distribution of observations, in the presence of outliers. However, DPD involves an integral of the power of the parametric density models to be estimated; the explicit form of the integral term can be derived only for specific densities, such as normal and exponential densities. While we may perform a numerical integration for each iteration of the optimization algorithms, the computational complexity has hindered the practical application of DPD-based estimation to more general parametric densities. To address the issue, this study introduces a stochastic approach to minimize DPD for general parametric density models. The proposed approach can also be employed to minimize other density power-based <span>\\(\\gamma\\)</span>-divergences, by leveraging unnormalized models. We provide <span>R</span> package for implementation of the proposed approach in https://github.com/oknakfm/sgdpd.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing robust density power-based divergences for general parametric density models\",\"authors\":\"Akifumi Okuno\",\"doi\":\"10.1007/s10463-024-00906-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Density power divergence (DPD) is designed to robustly estimate the underlying distribution of observations, in the presence of outliers. However, DPD involves an integral of the power of the parametric density models to be estimated; the explicit form of the integral term can be derived only for specific densities, such as normal and exponential densities. While we may perform a numerical integration for each iteration of the optimization algorithms, the computational complexity has hindered the practical application of DPD-based estimation to more general parametric densities. To address the issue, this study introduces a stochastic approach to minimize DPD for general parametric density models. The proposed approach can also be employed to minimize other density power-based <span>\\\\(\\\\gamma\\\\)</span>-divergences, by leveraging unnormalized models. We provide <span>R</span> package for implementation of the proposed approach in https://github.com/oknakfm/sgdpd.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-024-00906-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00906-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
密度幂发散(DPD)的目的是在存在异常值的情况下,稳健地估计观测数据的基本分布。然而,DPD 涉及待估算参数密度模型的幂积分;积分项的明确形式只能针对特定密度(如正态密度和指数密度)进行推导。虽然我们可以对优化算法的每次迭代进行数值积分,但计算复杂性阻碍了基于 DPD 的估计方法在更一般的参数密度中的实际应用。为了解决这个问题,本研究引入了一种随机方法,以最小化一般参数密度模型的 DPD。通过利用非规范化模型,所提出的方法也可用于最小化其他基于密度幂次的(\gamma\)-差分。我们提供了 R 软件包,用于在 https://github.com/oknakfm/sgdpd 中实现所提出的方法。
Minimizing robust density power-based divergences for general parametric density models
Density power divergence (DPD) is designed to robustly estimate the underlying distribution of observations, in the presence of outliers. However, DPD involves an integral of the power of the parametric density models to be estimated; the explicit form of the integral term can be derived only for specific densities, such as normal and exponential densities. While we may perform a numerical integration for each iteration of the optimization algorithms, the computational complexity has hindered the practical application of DPD-based estimation to more general parametric densities. To address the issue, this study introduces a stochastic approach to minimize DPD for general parametric density models. The proposed approach can also be employed to minimize other density power-based \(\gamma\)-divergences, by leveraging unnormalized models. We provide R package for implementation of the proposed approach in https://github.com/oknakfm/sgdpd.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.