使用不同鳍片的螺旋盘管热交换器提高潜热储存系统效率的不同 HTF 放电效应实验研究

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Thermophysics Pub Date : 2024-05-04 DOI:10.1007/s10765-024-03373-9
M. Syukur L. Syahbana, Yoga Kurniawan, Ismail Ismail
{"title":"使用不同鳍片的螺旋盘管热交换器提高潜热储存系统效率的不同 HTF 放电效应实验研究","authors":"M. Syukur L. Syahbana,&nbsp;Yoga Kurniawan,&nbsp;Ismail Ismail","doi":"10.1007/s10765-024-03373-9","DOIUrl":null,"url":null,"abstract":"<div><p>The heat storage system (HHS) still faces the problem of void formation as a result of the supercooling phenomenon caused by the use of paraffin. This study was conducted to analyze the effect of HTF discharge variation in the HHS system on the increase of heat storage efficiency in both the charging and discharging processes. The prototype helical coil heat exchanger is designed, fabricated, and experimentally analyzed on 4 types of helical coils with different models of fin designs: finless helical coil, straight fin, branched fin, and crossed fin. The phase change material (PCM) used is 9 kg of commercial paraffin type. The heat transfer fluid (HTF) is SAE 20W40 oil which is heated to a temperature of 210 °C with the heat source coming from the heating element. The pump is used to circulate the HTF with an output of 10 mL·s<sup>−1</sup>, 11 mL·s<sup>−1</sup>, and 12 mL·s<sup>−1</sup>. The experimental results show that the variation of the HTF flow rate affects the melting temperature, the paraffin freezing temperature, and the power efficiency of the LHS. The highest temperature absorption by paraffin was achieved by the branch fin model at 124 °C with a discharge of 11 mL·s<sup>−1</sup>, and the highest temperature release in the Branch Fin at 90 °C with a discharge of 12 mL·s<sup>−1</sup>. The highest effective power achieved by the branched fin model with effective power of 73 % charge and 53 % discharge occurred at a discharge of 12 mL·s<sup>−1</sup>. Varying the HTF discharge makes a positive contribution to the charge/discharge pattern, so it can be used as a reference for latent heat storage models.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on the Effect of Different HTF Discharges to Increase Efficiency of a Latent Heat Storage System Using a Spiral Coil Heat Exchanger with Different Fins\",\"authors\":\"M. Syukur L. Syahbana,&nbsp;Yoga Kurniawan,&nbsp;Ismail Ismail\",\"doi\":\"10.1007/s10765-024-03373-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The heat storage system (HHS) still faces the problem of void formation as a result of the supercooling phenomenon caused by the use of paraffin. This study was conducted to analyze the effect of HTF discharge variation in the HHS system on the increase of heat storage efficiency in both the charging and discharging processes. The prototype helical coil heat exchanger is designed, fabricated, and experimentally analyzed on 4 types of helical coils with different models of fin designs: finless helical coil, straight fin, branched fin, and crossed fin. The phase change material (PCM) used is 9 kg of commercial paraffin type. The heat transfer fluid (HTF) is SAE 20W40 oil which is heated to a temperature of 210 °C with the heat source coming from the heating element. The pump is used to circulate the HTF with an output of 10 mL·s<sup>−1</sup>, 11 mL·s<sup>−1</sup>, and 12 mL·s<sup>−1</sup>. The experimental results show that the variation of the HTF flow rate affects the melting temperature, the paraffin freezing temperature, and the power efficiency of the LHS. The highest temperature absorption by paraffin was achieved by the branch fin model at 124 °C with a discharge of 11 mL·s<sup>−1</sup>, and the highest temperature release in the Branch Fin at 90 °C with a discharge of 12 mL·s<sup>−1</sup>. The highest effective power achieved by the branched fin model with effective power of 73 % charge and 53 % discharge occurred at a discharge of 12 mL·s<sup>−1</sup>. Varying the HTF discharge makes a positive contribution to the charge/discharge pattern, so it can be used as a reference for latent heat storage models.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"45 6\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03373-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03373-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

蓄热系统(HHS)仍然面临着因使用石蜡导致过冷现象而形成空洞的问题。本研究旨在分析 HTF 在 HHS 系统中的排量变化对提高充放电过程中的蓄热效率的影响。设计、制造了螺旋盘管热交换器原型,并对 4 种不同翅片设计型号的螺旋盘管进行了实验分析:无翅片螺旋盘管、直翅片、支翅片和交叉翅片。使用的相变材料(PCM)为 9 千克商用石蜡。导热油 (HTF) 是 SAE 20W40 机油,通过加热元件提供的热源将其加热至 210 °C。泵用于循环导热液体,输出量分别为 10 mL-s-1、11 mL-s-1 和 12 mL-s-1。实验结果表明,热固性液体流速的变化会影响熔化温度、石蜡冻结温度和 LHS 的功率效率。石蜡吸收温度最高的是 124 °C、排量为 11 mL-s-1 的分支翅片模型,而温度释放最高的是 90 °C、排量为 12 mL-s-1的分支翅片模型。在 12 mL-s-1 放电条件下,支翅式模型的有效功率最高,充电有效功率为 73%,放电有效功率为 53%。改变 HTF 的放电量对充放电模式有积极作用,因此可作为潜热存储模型的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study on the Effect of Different HTF Discharges to Increase Efficiency of a Latent Heat Storage System Using a Spiral Coil Heat Exchanger with Different Fins

The heat storage system (HHS) still faces the problem of void formation as a result of the supercooling phenomenon caused by the use of paraffin. This study was conducted to analyze the effect of HTF discharge variation in the HHS system on the increase of heat storage efficiency in both the charging and discharging processes. The prototype helical coil heat exchanger is designed, fabricated, and experimentally analyzed on 4 types of helical coils with different models of fin designs: finless helical coil, straight fin, branched fin, and crossed fin. The phase change material (PCM) used is 9 kg of commercial paraffin type. The heat transfer fluid (HTF) is SAE 20W40 oil which is heated to a temperature of 210 °C with the heat source coming from the heating element. The pump is used to circulate the HTF with an output of 10 mL·s−1, 11 mL·s−1, and 12 mL·s−1. The experimental results show that the variation of the HTF flow rate affects the melting temperature, the paraffin freezing temperature, and the power efficiency of the LHS. The highest temperature absorption by paraffin was achieved by the branch fin model at 124 °C with a discharge of 11 mL·s−1, and the highest temperature release in the Branch Fin at 90 °C with a discharge of 12 mL·s−1. The highest effective power achieved by the branched fin model with effective power of 73 % charge and 53 % discharge occurred at a discharge of 12 mL·s−1. Varying the HTF discharge makes a positive contribution to the charge/discharge pattern, so it can be used as a reference for latent heat storage models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
期刊最新文献
A Composite Microwave Cavity for Liquid Volume Fraction and Simultaneous Phase Permittivity Measurements Thermal Conductivity Characterization of High Oleic Vegetable Oils Based Hybrid Nanofluids Formulated Using GnP, TiO2, MoS2, Al2O3 Nanoparticles for MQL Machining Thermophysical and Chemical Characteristics of a Biosourced Composite Material Developed to Enhance the Thermal Inertia of Building Walls in Arid Climates Investigation of the Phonon Interaction Influence on the Irreversible Energy Dissipation During Interfacial Energy Transfer Experimental Study on Cu–Cu–MWCNTs-Hybrid-Nanocomposite Coated Nanostructured Surfaces for Augmenting Pool Boiling Heat Transfer Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1