在冷气体动力喷射条件下利用分子动力学方法对纳米粒子撞击目标的数值模拟

IF 0.5 4区 工程技术 Q4 MECHANICS Journal of Applied Mechanics and Technical Physics Pub Date : 2024-02-13 DOI:10.1134/S0021894423060044
O. V. Belai, S. P. Kiselev, V. P. Kiselev
{"title":"在冷气体动力喷射条件下利用分子动力学方法对纳米粒子撞击目标的数值模拟","authors":"O. V. Belai,&nbsp;S. P. Kiselev,&nbsp;V. P. Kiselev","doi":"10.1134/S0021894423060044","DOIUrl":null,"url":null,"abstract":"<p>Results on a nanoparticle impact onto a target calculated by the molecular dynamics method are presented. The first problem being solved is the nanoparticle impact onto a target under the conditions of cold gas-dynamic spraying. The second problem deals with nanoparticle extension, which adheres to the target due to the impact. It is shown that a chemical bond between the nanoparticle and target is formed during the impact. The bond in the case of the titanium nanoparticle impact onto an aluminum target is found to be stronger than that in the case of the aluminum nanoparticle impact onto a titanium target. The reason is that the titanium nanoparticle penetrates into the aluminum target to a greater depth.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"64 6","pages":"964 - 971"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL SIMULATION OF A NANOPARTICLE IMPACT ONTO A TARGET BY THE MOLECULAR DYNAMICS METHOD UNDER THE CONDITIONS OF COLD GAS-DYNAMIC SPRAYING\",\"authors\":\"O. V. Belai,&nbsp;S. P. Kiselev,&nbsp;V. P. Kiselev\",\"doi\":\"10.1134/S0021894423060044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Results on a nanoparticle impact onto a target calculated by the molecular dynamics method are presented. The first problem being solved is the nanoparticle impact onto a target under the conditions of cold gas-dynamic spraying. The second problem deals with nanoparticle extension, which adheres to the target due to the impact. It is shown that a chemical bond between the nanoparticle and target is formed during the impact. The bond in the case of the titanium nanoparticle impact onto an aluminum target is found to be stronger than that in the case of the aluminum nanoparticle impact onto a titanium target. The reason is that the titanium nanoparticle penetrates into the aluminum target to a greater depth.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"64 6\",\"pages\":\"964 - 971\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894423060044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894423060044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 介绍了用分子动力学方法计算的纳米粒子撞击目标的结果。解决的第一个问题是在冷气体动力喷射条件下纳米粒子撞击目标的问题。第二个问题涉及纳米粒子的延伸,纳米粒子由于撞击而附着在靶上。研究表明,在撞击过程中,纳米粒子和目标之间会形成化学键。在钛纳米粒子撞击铝靶的情况下,这种结合力要比铝纳米粒子撞击钛靶的情况下更强。原因是钛纳米粒子渗入铝靶的深度更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NUMERICAL SIMULATION OF A NANOPARTICLE IMPACT ONTO A TARGET BY THE MOLECULAR DYNAMICS METHOD UNDER THE CONDITIONS OF COLD GAS-DYNAMIC SPRAYING

Results on a nanoparticle impact onto a target calculated by the molecular dynamics method are presented. The first problem being solved is the nanoparticle impact onto a target under the conditions of cold gas-dynamic spraying. The second problem deals with nanoparticle extension, which adheres to the target due to the impact. It is shown that a chemical bond between the nanoparticle and target is formed during the impact. The bond in the case of the titanium nanoparticle impact onto an aluminum target is found to be stronger than that in the case of the aluminum nanoparticle impact onto a titanium target. The reason is that the titanium nanoparticle penetrates into the aluminum target to a greater depth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
43
审稿时长
4-8 weeks
期刊介绍: Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.
期刊最新文献
STATE OF ART AND PROSPECTS OF INVESTIGATING THE POSSIBILITY OF TURBULENT BOUNDARY LAYER CONTROL BY AIR BLOWING ON A BODY OF REVOLUTION (REVIEW) REACTIVE HOT PRESSING OF B4C–CrB2 CERAMICS AND ITS MECHANICAL PROPERTIES SOLUTION TO A COUPLED PROBLEM OF THERMOMECHANICAL CONTACT OF FUEL ELEMENTS HYDRODYNAMICS OF NON-MAGNETIC DROPLETS IN MAGNETIC FLUIDS IN MICROFLUIDIC CHIPS UNDER THE INFLUENCE OF INHOMOGENEOUS MAGNETIC FIELDS DESIGN, ADJUSTMENT, AND MODE RESEARCH OF LOW-EMISSION BURNER FOR FUEL COMBUSTION IN A SUPERHEATED STEAM JET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1