选择完美平衡的逻辑数量反应平衡变体

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED Journal of Optimization Theory and Applications Pub Date : 2024-05-03 DOI:10.1007/s10957-024-02433-2
Yiyin Cao, Yin Chen, Chuangyin Dang
{"title":"选择完美平衡的逻辑数量反应平衡变体","authors":"Yiyin Cao, Yin Chen, Chuangyin Dang","doi":"10.1007/s10957-024-02433-2","DOIUrl":null,"url":null,"abstract":"<p>The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"25 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium\",\"authors\":\"Yiyin Cao, Yin Chen, Chuangyin Dang\",\"doi\":\"10.1007/s10957-024-02433-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02433-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02433-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

完美均衡的概念由塞尔滕(Int J Game Theory 4:25-55, 1975)提出,是策略扰动中理性的有效表征。在我们的研究中,我们提出了一个包含扰动控制参数的修正版完全均衡。为了使信念与均衡选择概率相匹配,McKelvey 和 Palfrey(Games Econ Behav 10:6-38, 1995)建立了逻辑量子响应均衡(logistic QRE),它只能选择纳什均衡。通过引入混合策略剖面与给定正元素向量之间的线性组合,本文开发了一种用于选择完美均衡特殊版本的逻辑 QRE 变体。在这一变体的基础上,我们构建了一个包含额外变量指数函数的均衡系统。通过严格的误差约束分析,我们证明了当额外变量趋近于零时,该均衡系统的解集会导致完美均衡。因此,我们确定了通向完全均衡的平滑路径的存在,并采用了变量的指数变换来确保数值稳定性。为了进行数值比较,我们利用了平方根 QRE 的一个变体,它产生了另一条通向完全均衡的平滑路径。数值结果进一步验证了所提出的可微分路径跟踪方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium

The concept of perfect equilibrium, formulated by Selten (Int J Game Theory 4:25–55, 1975), serves as an effective characterization of rationality in strategy perturbation. In our study, we propose a modified version of perfect equilibrium that incorporates perturbation control parameters. To match the beliefs with the equilibrium choice probabilities, the logistic quantal response equilibrium (logistic QRE) was established by McKelvey and Palfrey (Games Econ Behav 10:6–38, 1995), which is only able to select a Nash equilibrium. By introducing a linear combination between a mixed strategy profile and a given vector with positive elements, this paper develops a variant of the logistic QRE for the selection of the special version of perfect equilibrium. Expanding upon this variant, we construct an equilibrium system that incorporates an exponential function of an extra variable. Through rigorous error-bound analysis, we demonstrate that the solution set of this equilibrium system leads to a perfect equilibrium as the extra variable approaches zero. Consequently, we establish the existence of a smooth path to a perfect equilibrium and employ an exponential transformation of variables to ensure numerical stability. To make a numerical comparison, we capitalize on a variant of the square-root QRE, which yields another smooth path to a perfect equilibrium. Numerical results further verify the effectiveness and efficiency of the proposed differentiable path-following methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
期刊最新文献
Effects of patient education on the oral behavior of patients with temporomandibular degenerative joint disease: a prospective case series study. On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints. Simultaneous Diagonalization Under Weak Regularity and a Characterization Seeking Consensus on Subspaces in Federated Principal Component Analysis A Multilevel Method for Self-Concordant Minimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1