利用电离辐射 XRF 光谱快速、便捷、可靠地分析溶液中金属元素的方法

IF 2.5 4区 化学 Q3 CHEMISTRY, ANALYTICAL Journal of Analytical Science and Technology Pub Date : 2024-05-07 DOI:10.1186/s40543-024-00442-4
Filipe M. J. Figueiredo, José M. Carretas, João P. Leal, José M. Sardinha
{"title":"利用电离辐射 XRF 光谱快速、便捷、可靠地分析溶液中金属元素的方法","authors":"Filipe M. J. Figueiredo, José M. Carretas, João P. Leal, José M. Sardinha","doi":"10.1186/s40543-024-00442-4","DOIUrl":null,"url":null,"abstract":"The measurement of metals in solution is usually performed using inductive coupled plasma hyphenated techniques or atomic absorption. Although very sensitive and accurate, these analytical techniques are quite expensive and do not allow field measurements. The present work takes advantage of energy-dispersive X-ray fluorescence (ED-XRF) ease-of-use features to determine the concentration of rare earth elements (Y, Pr, Nd, Eu) and others (S, Fe, Ni, Cu, Zn) in aqueous solutions, after appropriate sample treatment. The approach turned out to be a reliable and very convenient procedure for field analysis. The simplicity, speed and reliability of the methodology used combined with the possibility of simultaneous analysis and low cost of the method can be advantageous in industrial context. The approach relies on the suspension of the target solutions in a cellulose matrix that is further converted into a pellet for direct analysis. Calibration curves obtained by regression analysis at 5% significance are shown for a variety of elements (S, Fe, Ni, Cu, Zn, Y, Pr, Nd, Eu) with correlation coefficients between 0.9555 and 0.9980. Higher coefficients of variance were obtained for the calibration of S and Pr due to low sensitivity and the overlapping with the L lines of Nd, respectively. The performed calibrations were not affected by the presence of other analytes in the matrix. Results obtained showed that it is possible to use the proposed methodology to accurately quantify d and f block metals in aqueous solutions by ED-XRF after sequestering the chemical content into a cellulose powder matrix and further processing into a pellet. ","PeriodicalId":14967,"journal":{"name":"Journal of Analytical Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast, accessible and reliable method for elemental analysis of metals in solution by ED-XRF spectroscopy\",\"authors\":\"Filipe M. J. Figueiredo, José M. Carretas, João P. Leal, José M. Sardinha\",\"doi\":\"10.1186/s40543-024-00442-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The measurement of metals in solution is usually performed using inductive coupled plasma hyphenated techniques or atomic absorption. Although very sensitive and accurate, these analytical techniques are quite expensive and do not allow field measurements. The present work takes advantage of energy-dispersive X-ray fluorescence (ED-XRF) ease-of-use features to determine the concentration of rare earth elements (Y, Pr, Nd, Eu) and others (S, Fe, Ni, Cu, Zn) in aqueous solutions, after appropriate sample treatment. The approach turned out to be a reliable and very convenient procedure for field analysis. The simplicity, speed and reliability of the methodology used combined with the possibility of simultaneous analysis and low cost of the method can be advantageous in industrial context. The approach relies on the suspension of the target solutions in a cellulose matrix that is further converted into a pellet for direct analysis. Calibration curves obtained by regression analysis at 5% significance are shown for a variety of elements (S, Fe, Ni, Cu, Zn, Y, Pr, Nd, Eu) with correlation coefficients between 0.9555 and 0.9980. Higher coefficients of variance were obtained for the calibration of S and Pr due to low sensitivity and the overlapping with the L lines of Nd, respectively. The performed calibrations were not affected by the presence of other analytes in the matrix. Results obtained showed that it is possible to use the proposed methodology to accurately quantify d and f block metals in aqueous solutions by ED-XRF after sequestering the chemical content into a cellulose powder matrix and further processing into a pellet. \",\"PeriodicalId\":14967,\"journal\":{\"name\":\"Journal of Analytical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Science and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40543-024-00442-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40543-024-00442-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

溶液中金属的测量通常采用电感耦合等离子体联用技术或原子吸收技术。虽然这些分析技术非常灵敏准确,但价格昂贵,而且无法进行实地测量。本研究利用能量色散 X 射线荧光(ED-XRF)易于使用的特点,在对样品进行适当处理后,测定水溶液中稀土元素(Y、Pr、Nd、Eu)和其他元素(S、Fe、Ni、Cu、Zn)的浓度。事实证明,该方法是一种可靠且非常方便的现场分析程序。该方法简单、快速、可靠,可同时进行分析,而且成本低廉,在工业领域具有优势。这种方法是将目标溶液悬浮在纤维素基质中,然后再将其转化为颗粒,直接进行分析。在 5%的显著性下,通过回归分析获得的校准曲线显示了多种元素(S、Fe、Ni、Cu、Zn、Y、Pr、Nd、Eu)的相关系数在 0.9555 和 0.9980 之间。由于 S 和 Pr 的灵敏度较低,且与 Nd 的 L 线重叠,因此校准 S 和 Pr 的方差系数较高。所进行的定标不受基质中存在其他分析物的影响。结果表明,在将化学成分封存到纤维素粉末基质中并进一步加工成颗粒后,可以使用所提出的方法通过电离-XRF 对水溶液中的 d 和 f 块状金属进行精确定量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast, accessible and reliable method for elemental analysis of metals in solution by ED-XRF spectroscopy
The measurement of metals in solution is usually performed using inductive coupled plasma hyphenated techniques or atomic absorption. Although very sensitive and accurate, these analytical techniques are quite expensive and do not allow field measurements. The present work takes advantage of energy-dispersive X-ray fluorescence (ED-XRF) ease-of-use features to determine the concentration of rare earth elements (Y, Pr, Nd, Eu) and others (S, Fe, Ni, Cu, Zn) in aqueous solutions, after appropriate sample treatment. The approach turned out to be a reliable and very convenient procedure for field analysis. The simplicity, speed and reliability of the methodology used combined with the possibility of simultaneous analysis and low cost of the method can be advantageous in industrial context. The approach relies on the suspension of the target solutions in a cellulose matrix that is further converted into a pellet for direct analysis. Calibration curves obtained by regression analysis at 5% significance are shown for a variety of elements (S, Fe, Ni, Cu, Zn, Y, Pr, Nd, Eu) with correlation coefficients between 0.9555 and 0.9980. Higher coefficients of variance were obtained for the calibration of S and Pr due to low sensitivity and the overlapping with the L lines of Nd, respectively. The performed calibrations were not affected by the presence of other analytes in the matrix. Results obtained showed that it is possible to use the proposed methodology to accurately quantify d and f block metals in aqueous solutions by ED-XRF after sequestering the chemical content into a cellulose powder matrix and further processing into a pellet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Analytical Science and Technology
Journal of Analytical Science and Technology Environmental Science-General Environmental Science
CiteScore
4.00
自引率
4.20%
发文量
39
审稿时长
13 weeks
期刊介绍: The Journal of Analytical Science and Technology (JAST) is a fully open access peer-reviewed scientific journal published under the brand SpringerOpen. JAST was launched by Korea Basic Science Institute in 2010. JAST publishes original research and review articles on all aspects of analytical principles, techniques, methods, procedures, and equipment. JAST’s vision is to be an internationally influential and widely read analytical science journal. Our mission is to inform and stimulate researchers to make significant professional achievements in science. We aim to provide scientists, researchers, and students worldwide with unlimited access to the latest advances of the analytical sciences.
期刊最新文献
Inorganic iodine and bromine speciation in Arctic snow at picogram-per-grams levels by IC-ICP-MS Accurate determination of high sulfur content in sulfide samples: an optimized ICP-OES method Spray-assisted drop formation liquid-phase microextraction for the determination of sertraline in environmental water samples with matrix-matching calibration in GC–MS Isotopic distribution of bioavailable Sr, Nd, and Pb in Chungcheongbuk-do Province, Korea Exploring the feasibility of a single-protoplast proteomic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1