{"title":"偏高岭土和煅烧粘土混合水泥对混凝土抗氯性和电阻率的影响","authors":"Aunchana Kijjanon, Taweechai Sumranwanich, Somnuk Tangtermsirikul","doi":"10.1680/jadcr.23.00162","DOIUrl":null,"url":null,"abstract":"There are many different grades of kaolinite clays around the world. Low-grade kaolinite clay is more abundant than high-grade kaolinite clay in various regions. To aim toward the utilization of low-grade kaolinite clay having an original kaolinite content of about 40% to produce calcined clay, this paper investigated the durability properties of concrete incorporating calcined clay produced from high-grade kaolinite clay or high kaolinite content (commercially available metakaolin or CC1) and calcined clay produced from a low-grade kaolinite clay (CC2). Concrete mixtures were designed to have a water-to-binder ratio of 0.60. A fly ash-to-binder ratio of 0.20 and calcined kaolinite clay-to-binder ratios of 0.10 and 0.20 were studied. The chloride penetration resistance and the electrical resistivity of concrete were assessed, while the mercury intrusion porosimetry (MIP) was utilized in evaluating the pore structure of concrete. The test results revealed that concrete with CC1 and CC2 exhibited superior chloride penetration resistance and chloride binding capacity than OPC and FA20 concretes. Moreover, using a higher calcined clay-to-binder ratio resulted in a more refined pore structure, which significantly enhanced the chloride resistance of concrete. Although CC2 revealed less performance in improving chloride resistance than CC1, it had superior performance compared to fly ash.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influences of metakaolin and calcined clay blended cement on chloride resistance and electrical resistivity of concrete\",\"authors\":\"Aunchana Kijjanon, Taweechai Sumranwanich, Somnuk Tangtermsirikul\",\"doi\":\"10.1680/jadcr.23.00162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many different grades of kaolinite clays around the world. Low-grade kaolinite clay is more abundant than high-grade kaolinite clay in various regions. To aim toward the utilization of low-grade kaolinite clay having an original kaolinite content of about 40% to produce calcined clay, this paper investigated the durability properties of concrete incorporating calcined clay produced from high-grade kaolinite clay or high kaolinite content (commercially available metakaolin or CC1) and calcined clay produced from a low-grade kaolinite clay (CC2). Concrete mixtures were designed to have a water-to-binder ratio of 0.60. A fly ash-to-binder ratio of 0.20 and calcined kaolinite clay-to-binder ratios of 0.10 and 0.20 were studied. The chloride penetration resistance and the electrical resistivity of concrete were assessed, while the mercury intrusion porosimetry (MIP) was utilized in evaluating the pore structure of concrete. The test results revealed that concrete with CC1 and CC2 exhibited superior chloride penetration resistance and chloride binding capacity than OPC and FA20 concretes. Moreover, using a higher calcined clay-to-binder ratio resulted in a more refined pore structure, which significantly enhanced the chloride resistance of concrete. Although CC2 revealed less performance in improving chloride resistance than CC1, it had superior performance compared to fly ash.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jadcr.23.00162\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00162","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Influences of metakaolin and calcined clay blended cement on chloride resistance and electrical resistivity of concrete
There are many different grades of kaolinite clays around the world. Low-grade kaolinite clay is more abundant than high-grade kaolinite clay in various regions. To aim toward the utilization of low-grade kaolinite clay having an original kaolinite content of about 40% to produce calcined clay, this paper investigated the durability properties of concrete incorporating calcined clay produced from high-grade kaolinite clay or high kaolinite content (commercially available metakaolin or CC1) and calcined clay produced from a low-grade kaolinite clay (CC2). Concrete mixtures were designed to have a water-to-binder ratio of 0.60. A fly ash-to-binder ratio of 0.20 and calcined kaolinite clay-to-binder ratios of 0.10 and 0.20 were studied. The chloride penetration resistance and the electrical resistivity of concrete were assessed, while the mercury intrusion porosimetry (MIP) was utilized in evaluating the pore structure of concrete. The test results revealed that concrete with CC1 and CC2 exhibited superior chloride penetration resistance and chloride binding capacity than OPC and FA20 concretes. Moreover, using a higher calcined clay-to-binder ratio resulted in a more refined pore structure, which significantly enhanced the chloride resistance of concrete. Although CC2 revealed less performance in improving chloride resistance than CC1, it had superior performance compared to fly ash.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.