开发用于生产无抗生素蔗糖异构酶的工程枯草芽孢杆菌菌株。

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Biotechnology Journal Pub Date : 2024-05-08 DOI:10.1002/biot.202400178
Mingyu Li, Xiaopeng Ren, Ming Xu, Sitong Dong, Xianzhen Li, Xiaoyi Chen, Conggang Wang, Fan Yang
{"title":"开发用于生产无抗生素蔗糖异构酶的工程枯草芽孢杆菌菌株。","authors":"Mingyu Li,&nbsp;Xiaopeng Ren,&nbsp;Ming Xu,&nbsp;Sitong Dong,&nbsp;Xianzhen Li,&nbsp;Xiaoyi Chen,&nbsp;Conggang Wang,&nbsp;Fan Yang","doi":"10.1002/biot.202400178","DOIUrl":null,"url":null,"abstract":"<p>Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered <i>Bacillus subtilis</i> strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the <i>B. subtilis</i> strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL<sup>-1</sup> in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL<sup>-1</sup> during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered <i>B. subtilis</i> strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an engineered Bacillus subtilis strain for antibiotic-free sucrose isomerase production\",\"authors\":\"Mingyu Li,&nbsp;Xiaopeng Ren,&nbsp;Ming Xu,&nbsp;Sitong Dong,&nbsp;Xianzhen Li,&nbsp;Xiaoyi Chen,&nbsp;Conggang Wang,&nbsp;Fan Yang\",\"doi\":\"10.1002/biot.202400178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered <i>Bacillus subtilis</i> strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the <i>B. subtilis</i> strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL<sup>-1</sup> in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL<sup>-1</sup> during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered <i>B. subtilis</i> strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400178\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400178","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蔗糖异构酶(SIase)催化蔗糖水解和异构化成异麦芽糖,异麦芽糖是一种广泛应用于食品工业的功能糖。然而,由于缺乏安全高效的异源 SIase 表达系统,其生产和应用受到了限制。在本研究中,通过食品级表达系统开发了一种可生产无抗生素 SIase 的枯草芽孢杆菌工程菌株。首先,通过CRISPR/Cas9系统改造枯草芽孢杆菌菌株TEA,得到突变菌株TEA4,该菌株具有更强的重组蛋白表达能力。为了高效安全地生产 SIase,对不同的组成型和诱导型启动子进行了评估。研究发现,麦芽糖诱导型启动子 Poglv 在工程菌株 TEA4 中的胞外 SIase 活性为 21.7 U mL-1。随后对培养基进行的优化进一步提高了摇瓶培养中的 SIase 活性,达到 26.4 U mL-1。最终,在高浓度蔗糖条件下,使用工程菌株的粗酶液进行生物转化反应可获得较高的异麦芽糖产量,最高产量达 83.1%。这些发现证明了一种可生产无抗生素异麦芽糖酶的工程化枯草芽孢杆菌菌株,为其规模化工业生产和应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an engineered Bacillus subtilis strain for antibiotic-free sucrose isomerase production

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered Bacillus subtilis strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the B. subtilis strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL-1 in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL-1 during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered B. subtilis strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
期刊最新文献
Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi Efficient generation of recombinant anti-HER2 scFv with high yield and purity using a simple method Efficient production of 22(R)-hydroxycholesterol via combination optimization of Saccharomyces cerevisiae Exosomal lncRNA USP30-AS1 activates the Wnt/β-catenin signaling pathway to promote cervical cancer progression via stabilization of β-catenin by USP30 Synthetic biology for Monascus: From strain breeding to industrial production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1