衰老细胞对肢体再生的影响

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cellular reprogramming Pub Date : 2024-06-01 Epub Date: 2024-05-07 DOI:10.1089/cell.2024.0021
Marlene J Oesterle, Nicholas D Leigh
{"title":"衰老细胞对肢体再生的影响","authors":"Marlene J Oesterle, Nicholas D Leigh","doi":"10.1089/cell.2024.0021","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is a state in which cells enter cell cycle arrest. However, senescent cells have the ability to secrete signaling molecules such as chemokines, cytokines, and growth factors. This secretory activity is an important feature of senescent cells, since the secreted factors impact the surrounding cellular microenvironment. Indeed, senescent cells and their secretome play a crucial role during limb development. However, whether the process of limb regeneration also relies on senescent cells remains unclear. Creation of a novel targeted depletion strategy that can eliminate senescent cells in the regenerating limb has now demonstrated an important role for senescent cells in limb regeneration. This role is linked to senescent cell-derived Wnt signaling. These findings reveal a previously unknown role for senescent cells during limb regeneration through Wnt signaling.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":"91-92"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Senescent Cells on Limb Regeneration.\",\"authors\":\"Marlene J Oesterle, Nicholas D Leigh\",\"doi\":\"10.1089/cell.2024.0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular senescence is a state in which cells enter cell cycle arrest. However, senescent cells have the ability to secrete signaling molecules such as chemokines, cytokines, and growth factors. This secretory activity is an important feature of senescent cells, since the secreted factors impact the surrounding cellular microenvironment. Indeed, senescent cells and their secretome play a crucial role during limb development. However, whether the process of limb regeneration also relies on senescent cells remains unclear. Creation of a novel targeted depletion strategy that can eliminate senescent cells in the regenerating limb has now demonstrated an important role for senescent cells in limb regeneration. This role is linked to senescent cell-derived Wnt signaling. These findings reveal a previously unknown role for senescent cells during limb regeneration through Wnt signaling.</p>\",\"PeriodicalId\":9708,\"journal\":{\"name\":\"Cellular reprogramming\",\"volume\":\" \",\"pages\":\"91-92\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular reprogramming\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2024.0021\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2024.0021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞衰老是细胞进入细胞周期停滞的一种状态。然而,衰老细胞有能力分泌信号分子,如趋化因子、细胞因子和生长因子。这种分泌活动是衰老细胞的一个重要特征,因为分泌的因子会影响周围的细胞微环境。事实上,衰老细胞及其分泌物在肢体发育过程中起着至关重要的作用。然而,肢体再生过程是否也依赖于衰老细胞仍不清楚。现在,一种新颖的靶向消耗策略能够消除再生肢体中的衰老细胞,它证明了衰老细胞在肢体再生中的重要作用。这种作用与衰老细胞衍生的 Wnt 信号有关。这些发现揭示了衰老细胞通过 Wnt 信号在肢体再生过程中扮演的一个未知角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Senescent Cells on Limb Regeneration.

Cellular senescence is a state in which cells enter cell cycle arrest. However, senescent cells have the ability to secrete signaling molecules such as chemokines, cytokines, and growth factors. This secretory activity is an important feature of senescent cells, since the secreted factors impact the surrounding cellular microenvironment. Indeed, senescent cells and their secretome play a crucial role during limb development. However, whether the process of limb regeneration also relies on senescent cells remains unclear. Creation of a novel targeted depletion strategy that can eliminate senescent cells in the regenerating limb has now demonstrated an important role for senescent cells in limb regeneration. This role is linked to senescent cell-derived Wnt signaling. These findings reveal a previously unknown role for senescent cells during limb regeneration through Wnt signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
期刊最新文献
Reprogramming of Expanded Cord Blood-Derived CD34+ Cells from Umbilical Cord-Mesenchymal Stromal Cell Co-Culture to Generate Human-Induced Pluripotent Stem Cells. Reprogramming Stars #19: Upgrading Cell Fate Conversions with Engineered Reprogramming Factors-An Interview with Dr. Ralf Jauch. Transplantation of Human Induced Pluripotent Stem Cell-Derived Airway Epithelia at Different Induction Stages into Nude Rat. Reaching the Holy Grail: Making hematopoietic stem cells in a Dish. A New Frontier in Tumor Eradication: Harnessing In Vivo Cellular Reprogramming for Durable Cancer Immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1