{"title":"我们对小儿 LCH 遗传标记和靶向疗法的认识取得了进展。","authors":"Aban Bahabri, Oussama Abla","doi":"10.1080/17474086.2024.2353772","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm, encompassing a diverse clinical spectrum ranging from localized bone or skin lesions to a multisystemic life-threatening condition. Over the past decade, there has been an expansion in understanding the molecular biology of LCH, which translated into innovative targeted therapeutic approaches.</p><p><strong>Areas covered: </strong>In this article, we will review the molecular alterations observed in pediatric LCH and the relationship between these molecular changes and the clinical phenotype, as well as targeted therapies in LCH.</p><p><strong>Expert opinion: </strong>Mitogen-activated protein kinase (MAPK) pathway mutation is a hallmark of LCH and is identified in 80% of the cases. Notably, BRAFV600E mutation is seen in ~50-60% of the cases, ~30% has other MAPK pathway mutations, while 15-20% have no detected mutations. While the first line therapeutic approach is vinblastine and prednisone, targeted therapies - specifically BRAF/MEK inhibitors - emerged as a promising second-line salvage strategy, particularly when a mutation is identified. Most patients respond to BRAF/MEK inhibitors but at least 75% reactivate after stopping, however, most patients respond again when restarting inhibitors.</p>","PeriodicalId":12325,"journal":{"name":"Expert Review of Hematology","volume":" ","pages":"223-231"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in our understanding of genetic markers and targeted therapies for pediatric LCH.\",\"authors\":\"Aban Bahabri, Oussama Abla\",\"doi\":\"10.1080/17474086.2024.2353772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm, encompassing a diverse clinical spectrum ranging from localized bone or skin lesions to a multisystemic life-threatening condition. Over the past decade, there has been an expansion in understanding the molecular biology of LCH, which translated into innovative targeted therapeutic approaches.</p><p><strong>Areas covered: </strong>In this article, we will review the molecular alterations observed in pediatric LCH and the relationship between these molecular changes and the clinical phenotype, as well as targeted therapies in LCH.</p><p><strong>Expert opinion: </strong>Mitogen-activated protein kinase (MAPK) pathway mutation is a hallmark of LCH and is identified in 80% of the cases. Notably, BRAFV600E mutation is seen in ~50-60% of the cases, ~30% has other MAPK pathway mutations, while 15-20% have no detected mutations. While the first line therapeutic approach is vinblastine and prednisone, targeted therapies - specifically BRAF/MEK inhibitors - emerged as a promising second-line salvage strategy, particularly when a mutation is identified. Most patients respond to BRAF/MEK inhibitors but at least 75% reactivate after stopping, however, most patients respond again when restarting inhibitors.</p>\",\"PeriodicalId\":12325,\"journal\":{\"name\":\"Expert Review of Hematology\",\"volume\":\" \",\"pages\":\"223-231\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17474086.2024.2353772\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17474086.2024.2353772","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Advances in our understanding of genetic markers and targeted therapies for pediatric LCH.
Introduction: Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm, encompassing a diverse clinical spectrum ranging from localized bone or skin lesions to a multisystemic life-threatening condition. Over the past decade, there has been an expansion in understanding the molecular biology of LCH, which translated into innovative targeted therapeutic approaches.
Areas covered: In this article, we will review the molecular alterations observed in pediatric LCH and the relationship between these molecular changes and the clinical phenotype, as well as targeted therapies in LCH.
Expert opinion: Mitogen-activated protein kinase (MAPK) pathway mutation is a hallmark of LCH and is identified in 80% of the cases. Notably, BRAFV600E mutation is seen in ~50-60% of the cases, ~30% has other MAPK pathway mutations, while 15-20% have no detected mutations. While the first line therapeutic approach is vinblastine and prednisone, targeted therapies - specifically BRAF/MEK inhibitors - emerged as a promising second-line salvage strategy, particularly when a mutation is identified. Most patients respond to BRAF/MEK inhibitors but at least 75% reactivate after stopping, however, most patients respond again when restarting inhibitors.
期刊介绍:
Advanced molecular research techniques have transformed hematology in recent years. With improved understanding of hematologic diseases, we now have the opportunity to research and evaluate new biological therapies, new drugs and drug combinations, new treatment schedules and novel approaches including stem cell transplantation. We can also expect proteomics, molecular genetics and biomarker research to facilitate new diagnostic approaches and the identification of appropriate therapies. Further advances in our knowledge regarding the formation and function of blood cells and blood-forming tissues should ensue, and it will be a major challenge for hematologists to adopt these new paradigms and develop integrated strategies to define the best possible patient care. Expert Review of Hematology (1747-4086) puts these advances in context and explores how they will translate directly into clinical practice.