评估人类疫苗中加入的纳米铝可能具有的遗传毒性以及纳米姜黄素的潜在保护作用:一项体内研究。

IF 3.2 4区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Toxicology Mechanisms and Methods Pub Date : 2024-09-01 Epub Date: 2024-05-22 DOI:10.1080/15376516.2024.2352736
Nevine Khairy Elkady, Abrar Roshdy Abouelkheir, Sherien S Ghaleb, Olfat Gamil Shaker, Heba Abd ElMonem Ibrahim, Eman Mohamed Ibraheim Moawad, Asmaa Mohammad Moawad
{"title":"评估人类疫苗中加入的纳米铝可能具有的遗传毒性以及纳米姜黄素的潜在保护作用:一项体内研究。","authors":"Nevine Khairy Elkady, Abrar Roshdy Abouelkheir, Sherien S Ghaleb, Olfat Gamil Shaker, Heba Abd ElMonem Ibrahim, Eman Mohamed Ibraheim Moawad, Asmaa Mohammad Moawad","doi":"10.1080/15376516.2024.2352736","DOIUrl":null,"url":null,"abstract":"<p><p>For nearly 90 years, aluminum (Al) salts have been utilized as vaccination adjuvants. Nevertheless, there is a risk of adverse effects associated with the amount of nanoaluminum used in various national pediatric immunization regimens. This study aimed to investigate the possible genotoxic effects of nanoaluminum incorporated in human vaccines on the brains of newborn albino rats and whether nanocurcumin has a potential protective effect against this toxicity. Fifty newborn albino rats were randomly assigned to 5 groups, with 10 in each group. Groups 1 and 2 received \"high\" and \"low\" Al injections corresponding to either the American or Scandinavian pediatric immunization schedules, respectively, as opposed to the control rats (group 5) that received saline injections. Groups 3 and 4 received the same regimens as groups 1 and 2 in addition to oral nanocurcumin. The expression of both the cell breakdown gene tumor protein (P53) and the cell stress gene uncoupling protein 2 (UCP2) was significantly greater in groups 1 and 2 than in group 5. Groups 1 and 2 exhibited severe DNA fragmentation, which was observed as DNA laddering. Nanocurcumin significantly reduced the expression of the P53 and UCP2 genes in groups 3 and 4, with very low or undetectable DNA laddering in both groups. Vaccination with nanoaluminum adjuvants can cause genotoxic effects, which can be mediated by the inflammatory response and oxidative stress, and nanocurcumin can protect against these toxic effects through the modulation of oxidative stress regulators and gene expression.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the possible genotoxicity of nanoaluminum incorporated in human vaccines and the potential protective role of nanocurcumin: an <i>in vivo</i> study.\",\"authors\":\"Nevine Khairy Elkady, Abrar Roshdy Abouelkheir, Sherien S Ghaleb, Olfat Gamil Shaker, Heba Abd ElMonem Ibrahim, Eman Mohamed Ibraheim Moawad, Asmaa Mohammad Moawad\",\"doi\":\"10.1080/15376516.2024.2352736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For nearly 90 years, aluminum (Al) salts have been utilized as vaccination adjuvants. Nevertheless, there is a risk of adverse effects associated with the amount of nanoaluminum used in various national pediatric immunization regimens. This study aimed to investigate the possible genotoxic effects of nanoaluminum incorporated in human vaccines on the brains of newborn albino rats and whether nanocurcumin has a potential protective effect against this toxicity. Fifty newborn albino rats were randomly assigned to 5 groups, with 10 in each group. Groups 1 and 2 received \\\"high\\\" and \\\"low\\\" Al injections corresponding to either the American or Scandinavian pediatric immunization schedules, respectively, as opposed to the control rats (group 5) that received saline injections. Groups 3 and 4 received the same regimens as groups 1 and 2 in addition to oral nanocurcumin. The expression of both the cell breakdown gene tumor protein (P53) and the cell stress gene uncoupling protein 2 (UCP2) was significantly greater in groups 1 and 2 than in group 5. Groups 1 and 2 exhibited severe DNA fragmentation, which was observed as DNA laddering. Nanocurcumin significantly reduced the expression of the P53 and UCP2 genes in groups 3 and 4, with very low or undetectable DNA laddering in both groups. Vaccination with nanoaluminum adjuvants can cause genotoxic effects, which can be mediated by the inflammatory response and oxidative stress, and nanocurcumin can protect against these toxic effects through the modulation of oxidative stress regulators and gene expression.</p>\",\"PeriodicalId\":23177,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2024.2352736\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2024.2352736","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

近 80 年来,纳米铝(Al)盐一直被用作疫苗佐剂。然而,各国儿科免疫接种方案中使用的纳米铝的数量可能会产生不良影响。本研究旨在调查人类疫苗中添加的纳米铝对新生白化大鼠大脑可能产生的基因毒性影响,以及纳米古柯碱是否对这种毒性具有潜在的保护作用。50 只新生白化大鼠被随机分配到 5 组,每组 10 只。第 1 组和第 2 组分别接受与美国或斯堪的纳维亚儿科免疫计划相对应的 "高 "和 "低 "Al 注射,而对照组(第 5 组)则接受生理盐水注射。第 3 组和第 4 组除了口服纳米姜黄素外,还接受了与第 1 组和第 2 组相同的治疗方案。细胞破坏基因肿瘤蛋白(P53)和细胞应激基因解偶联蛋白 2(UCP2)在第 1 组和第 2 组的表达量明显高于第 5 组。纳米古柯碱明显降低了第 3 组和第 4 组中 P53 和 UCP2 基因的表达,而这两组的 DNA 梯状化程度很低或检测不到。使用纳米铝佐剂接种疫苗会导致基因毒性效应,这种效应可能是由炎症反应和氧化应激介导的,而纳米姜黄素可以通过调节氧化应激调节因子和基因表达来抵御这些毒性效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating the possible genotoxicity of nanoaluminum incorporated in human vaccines and the potential protective role of nanocurcumin: an in vivo study.

For nearly 90 years, aluminum (Al) salts have been utilized as vaccination adjuvants. Nevertheless, there is a risk of adverse effects associated with the amount of nanoaluminum used in various national pediatric immunization regimens. This study aimed to investigate the possible genotoxic effects of nanoaluminum incorporated in human vaccines on the brains of newborn albino rats and whether nanocurcumin has a potential protective effect against this toxicity. Fifty newborn albino rats were randomly assigned to 5 groups, with 10 in each group. Groups 1 and 2 received "high" and "low" Al injections corresponding to either the American or Scandinavian pediatric immunization schedules, respectively, as opposed to the control rats (group 5) that received saline injections. Groups 3 and 4 received the same regimens as groups 1 and 2 in addition to oral nanocurcumin. The expression of both the cell breakdown gene tumor protein (P53) and the cell stress gene uncoupling protein 2 (UCP2) was significantly greater in groups 1 and 2 than in group 5. Groups 1 and 2 exhibited severe DNA fragmentation, which was observed as DNA laddering. Nanocurcumin significantly reduced the expression of the P53 and UCP2 genes in groups 3 and 4, with very low or undetectable DNA laddering in both groups. Vaccination with nanoaluminum adjuvants can cause genotoxic effects, which can be mediated by the inflammatory response and oxidative stress, and nanocurcumin can protect against these toxic effects through the modulation of oxidative stress regulators and gene expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.10%
发文量
66
审稿时长
6-12 weeks
期刊介绍: Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy. Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including: In vivo studies with standard and alternative species In vitro studies and alternative methodologies Molecular, biochemical, and cellular techniques Pharmacokinetics and pharmacodynamics Mathematical modeling and computer programs Forensic analyses Risk assessment Data collection and analysis.
期刊最新文献
Assessment of genotoxic damage induced by exposure to binary mixtures of polycyclic aromatic hydrocarbons and three heavy metals in male mice. Inonotus obliquus aqueous extract inhibits intestinal inflammation and insulin metabolism defects in Drosophila. In vitro evaluation of the toxicological effects of cooking oil fumes using a self-designed microfluidic chip. Naturally-derived phenethyl isothiocyanate modulates apoptotic induction through regulation of the intrinsic cascade and resulting apoptosome formation in human malignant melanoma cells. Time-course cross-species transcriptomics reveals conserved hepatotoxicity pathways induced by repeated administration of cyclosporine A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1