{"title":"考虑人体移动速度和频率的三维弹簧倒立摆行走模型。","authors":"Yu Bao, Hao-Wen Yang","doi":"10.1088/1748-3190/ad48ee","DOIUrl":null,"url":null,"abstract":"<p><p>The spring-loaded inverted pendulum (SLIP) model is an effective model to capture the essential dynamics during human walking and/or running. However, most of the existing three-dimensional (3D) SLIP model does not explicitly account for human movement speed and frequency. To address this knowledge gap, this paper develops a new SLIP model, which includes a roller foot, massless spring, and concentrated mass. The governing equations-of-motion for the SLIP model during its double support phase are derived. It is noted that in the current formulation, the motion of the roller foot is prescribed; therefore, only the equations for the concentrated mass need to be solved. To yield model parameters leading to a periodic walking gait, a constrained optimization problem is formulated and solved using a gradient-based approach with a global search strategy. The optimization results show that when the attack angle ranges from 68° to 74°, the 3D SLIP model can yield a periodic walking gait with walking speeds varying from 0.5 to 2.0 m s<sup>-1</sup>. The predicted human walking data are also compared with published experimental data, showing reasonable accuracy.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-dimensional spring-loaded inverted pendulum walking model considering human movement speed and frequency.\",\"authors\":\"Yu Bao, Hao-Wen Yang\",\"doi\":\"10.1088/1748-3190/ad48ee\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spring-loaded inverted pendulum (SLIP) model is an effective model to capture the essential dynamics during human walking and/or running. However, most of the existing three-dimensional (3D) SLIP model does not explicitly account for human movement speed and frequency. To address this knowledge gap, this paper develops a new SLIP model, which includes a roller foot, massless spring, and concentrated mass. The governing equations-of-motion for the SLIP model during its double support phase are derived. It is noted that in the current formulation, the motion of the roller foot is prescribed; therefore, only the equations for the concentrated mass need to be solved. To yield model parameters leading to a periodic walking gait, a constrained optimization problem is formulated and solved using a gradient-based approach with a global search strategy. The optimization results show that when the attack angle ranges from 68° to 74°, the 3D SLIP model can yield a periodic walking gait with walking speeds varying from 0.5 to 2.0 m s<sup>-1</sup>. The predicted human walking data are also compared with published experimental data, showing reasonable accuracy.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad48ee\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad48ee","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A three-dimensional spring-loaded inverted pendulum walking model considering human movement speed and frequency.
The spring-loaded inverted pendulum (SLIP) model is an effective model to capture the essential dynamics during human walking and/or running. However, most of the existing three-dimensional (3D) SLIP model does not explicitly account for human movement speed and frequency. To address this knowledge gap, this paper develops a new SLIP model, which includes a roller foot, massless spring, and concentrated mass. The governing equations-of-motion for the SLIP model during its double support phase are derived. It is noted that in the current formulation, the motion of the roller foot is prescribed; therefore, only the equations for the concentrated mass need to be solved. To yield model parameters leading to a periodic walking gait, a constrained optimization problem is formulated and solved using a gradient-based approach with a global search strategy. The optimization results show that when the attack angle ranges from 68° to 74°, the 3D SLIP model can yield a periodic walking gait with walking speeds varying from 0.5 to 2.0 m s-1. The predicted human walking data are also compared with published experimental data, showing reasonable accuracy.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.