介孔二氧化硅包裹核壳 NiRh@NiO 纳米催化剂用于性能增强型乙醇蒸汽转化

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-05-06 DOI:10.1016/j.jcat.2024.115536
Qiangqiang Xue, Zhengwen Li, Binhang Yan, Shafqat Ullah, Yujun Wang, Guangsheng Luo
{"title":"介孔二氧化硅包裹核壳 NiRh@NiO 纳米催化剂用于性能增强型乙醇蒸汽转化","authors":"Qiangqiang Xue,&nbsp;Zhengwen Li,&nbsp;Binhang Yan,&nbsp;Shafqat Ullah,&nbsp;Yujun Wang,&nbsp;Guangsheng Luo","doi":"10.1016/j.jcat.2024.115536","DOIUrl":null,"url":null,"abstract":"<div><p>A novel mesoporous SiO<sub>2</sub> encapsulated core-shell NiRh@NiO nanostructure was constructed to enhance the activity and stability of ethanol steam reforming (ESR). At 550 °C and ethanol-WHSV = 21 h<sup>−1</sup>, the specific activity and conversion loss (17 h) of NiRh@NiO@m-SiO<sub>2</sub> were 0.42 mol<sub>ethanol</sub>/(g<sub>cat.</sub>·h) and 10.9 %. The alloying of NiRh core, dominated NiO in shell, and abundant mesopore of SiO<sub>2</sub> were confirmed by systematic characterization techniques. The in situ DRIFTS results indicated that alloying Ni and Rh boosted ethoxide dehydrogenation to acetaldehyde and acetate demethanation to carbonate. ReaxFF molecular dynamics (MD) simulations suggested that NiO shell was conducive to water activation, which, in turn, promoted the conversion of CH<sub>x</sub>O<sub>y</sub> species. The SiO<sub>2</sub> encapsulation derived confinement effect inhibited both metal core sintering and leaching caused by the filamentous carbon. The abundant mesopores of SiO<sub>2</sub> ensured the facile in-diffusion of water and out-diffusion of carbonaceous products, suppressing carbon deposition within the SiO<sub>2</sub> encapsulation and the destruction of core-shell structure.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoporous silica encapsulated core-shell NiRh@NiO nanocatalyst for performance-enhanced ethanol steam reforming\",\"authors\":\"Qiangqiang Xue,&nbsp;Zhengwen Li,&nbsp;Binhang Yan,&nbsp;Shafqat Ullah,&nbsp;Yujun Wang,&nbsp;Guangsheng Luo\",\"doi\":\"10.1016/j.jcat.2024.115536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel mesoporous SiO<sub>2</sub> encapsulated core-shell NiRh@NiO nanostructure was constructed to enhance the activity and stability of ethanol steam reforming (ESR). At 550 °C and ethanol-WHSV = 21 h<sup>−1</sup>, the specific activity and conversion loss (17 h) of NiRh@NiO@m-SiO<sub>2</sub> were 0.42 mol<sub>ethanol</sub>/(g<sub>cat.</sub>·h) and 10.9 %. The alloying of NiRh core, dominated NiO in shell, and abundant mesopore of SiO<sub>2</sub> were confirmed by systematic characterization techniques. The in situ DRIFTS results indicated that alloying Ni and Rh boosted ethoxide dehydrogenation to acetaldehyde and acetate demethanation to carbonate. ReaxFF molecular dynamics (MD) simulations suggested that NiO shell was conducive to water activation, which, in turn, promoted the conversion of CH<sub>x</sub>O<sub>y</sub> species. The SiO<sub>2</sub> encapsulation derived confinement effect inhibited both metal core sintering and leaching caused by the filamentous carbon. The abundant mesopores of SiO<sub>2</sub> ensured the facile in-diffusion of water and out-diffusion of carbonaceous products, suppressing carbon deposition within the SiO<sub>2</sub> encapsulation and the destruction of core-shell structure.</p></div>\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021951724002495\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724002495","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了提高乙醇蒸汽转化(ESR)的活性和稳定性,研究人员构建了一种新型介孔二氧化硅包裹核壳NiRh@NiO纳米结构。在 550 °C 和乙醇-WHSV = 21 h-1 条件下,NiRh@NiO@m-SiO2 的比活性和转化损失(17 h)分别为 0.42 摩尔乙醇/(gcat.-h)和 10.9 %。系统表征技术证实了 NiRh 内核的合金化、外壳中 NiO 的主导地位以及丰富的 SiO2 中孔。原位 DRIFTS 结果表明,Ni 和 Rh 的合金化促进了乙醇脱氢生成乙醛和乙酸脱甲烷生成碳酸酯。ReaxFF 分子动力学(MD)模拟表明,氧化镍外壳有利于水的活化,进而促进了 CHxOy 物种的转化。SiO2 封装产生的约束效应既抑制了金属芯烧结,也抑制了由丝状碳引起的沥滤。二氧化硅丰富的中孔确保了水的顺利渗入和碳质产物的顺利渗出,从而抑制了碳在二氧化硅封装内的沉积和核壳结构的破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesoporous silica encapsulated core-shell NiRh@NiO nanocatalyst for performance-enhanced ethanol steam reforming

A novel mesoporous SiO2 encapsulated core-shell NiRh@NiO nanostructure was constructed to enhance the activity and stability of ethanol steam reforming (ESR). At 550 °C and ethanol-WHSV = 21 h−1, the specific activity and conversion loss (17 h) of NiRh@NiO@m-SiO2 were 0.42 molethanol/(gcat.·h) and 10.9 %. The alloying of NiRh core, dominated NiO in shell, and abundant mesopore of SiO2 were confirmed by systematic characterization techniques. The in situ DRIFTS results indicated that alloying Ni and Rh boosted ethoxide dehydrogenation to acetaldehyde and acetate demethanation to carbonate. ReaxFF molecular dynamics (MD) simulations suggested that NiO shell was conducive to water activation, which, in turn, promoted the conversion of CHxOy species. The SiO2 encapsulation derived confinement effect inhibited both metal core sintering and leaching caused by the filamentous carbon. The abundant mesopores of SiO2 ensured the facile in-diffusion of water and out-diffusion of carbonaceous products, suppressing carbon deposition within the SiO2 encapsulation and the destruction of core-shell structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
On the secondary promotion effect of Al and Ga on Cu/ZnO methanol synthesis catalysts Effect of 4,4′-dialkyl-2,2′-bipyridine ligands on the hydrolysis of dichlorodioxomolybdenum(VI) catalyst precursors and the switch from homogeneous epoxidation to heterogeneous systems Ligand engineering regulates the electronic structure of Ni-N-C sites to promote electrocatalytic acetylene semi-hydrogenation Structure sensitivity in the formic acid-driven catalytic transfer hydrogenation of maleic acid to succinic acid over Pd/catalysts Palladium-Catalyzed branch hydroaminocarbonylation of terminal alkynes with nitroarenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1