{"title":"利用工程酿酒酵母进行全细胞生物转化生产胸腺醌","authors":"Eunjee Kim, Minsun Kim, Min-Kyu Oh","doi":"10.1016/j.enzmictec.2024.110455","DOIUrl":null,"url":null,"abstract":"<div><p>Thymoquinone, extracted from the black seeds of <em>Nigella sativa</em>, is a natural substance with highly beneficial effects against various human diseases. In this study, we aimed to construct a <em>Saccharomyces cerevisiae</em> strain that, produce thymoquinone from thymol, a relatively inexpensive substrate. To achieve this, cytochrome P450 from <em>Origanum vulgare</em> was expressed in <em>S. cerevisiae</em> for the bioconversion of thymol to thymoquinone, with the co-expression of cytochrome P450 reductase (CPR) from <em>Arabidopsis thaliana</em>, ATR1. Additionally, flexible linkers were used to connect these two enzymes. Furthermore, modifications were performed to expand the endoplasmic reticulum (ER) space, leading to increased thymoquinone production. After integrating the genes into the chromosome and optimizing the media components, a significant improvement in the thymol-to-thymoquinone conversion rate and yield were achieved. This study represents a possibility of the production of thymoquinone, a bioactive ingredient of a plant, using an engineered microbial cell.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-cell bioconversion for producing thymoquinone by engineered Saccharomyces cerevisiae\",\"authors\":\"Eunjee Kim, Minsun Kim, Min-Kyu Oh\",\"doi\":\"10.1016/j.enzmictec.2024.110455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thymoquinone, extracted from the black seeds of <em>Nigella sativa</em>, is a natural substance with highly beneficial effects against various human diseases. In this study, we aimed to construct a <em>Saccharomyces cerevisiae</em> strain that, produce thymoquinone from thymol, a relatively inexpensive substrate. To achieve this, cytochrome P450 from <em>Origanum vulgare</em> was expressed in <em>S. cerevisiae</em> for the bioconversion of thymol to thymoquinone, with the co-expression of cytochrome P450 reductase (CPR) from <em>Arabidopsis thaliana</em>, ATR1. Additionally, flexible linkers were used to connect these two enzymes. Furthermore, modifications were performed to expand the endoplasmic reticulum (ER) space, leading to increased thymoquinone production. After integrating the genes into the chromosome and optimizing the media components, a significant improvement in the thymol-to-thymoquinone conversion rate and yield were achieved. This study represents a possibility of the production of thymoquinone, a bioactive ingredient of a plant, using an engineered microbial cell.</p></div>\",\"PeriodicalId\":11770,\"journal\":{\"name\":\"Enzyme and Microbial Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme and Microbial Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141022924000620\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000620","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Whole-cell bioconversion for producing thymoquinone by engineered Saccharomyces cerevisiae
Thymoquinone, extracted from the black seeds of Nigella sativa, is a natural substance with highly beneficial effects against various human diseases. In this study, we aimed to construct a Saccharomyces cerevisiae strain that, produce thymoquinone from thymol, a relatively inexpensive substrate. To achieve this, cytochrome P450 from Origanum vulgare was expressed in S. cerevisiae for the bioconversion of thymol to thymoquinone, with the co-expression of cytochrome P450 reductase (CPR) from Arabidopsis thaliana, ATR1. Additionally, flexible linkers were used to connect these two enzymes. Furthermore, modifications were performed to expand the endoplasmic reticulum (ER) space, leading to increased thymoquinone production. After integrating the genes into the chromosome and optimizing the media components, a significant improvement in the thymol-to-thymoquinone conversion rate and yield were achieved. This study represents a possibility of the production of thymoquinone, a bioactive ingredient of a plant, using an engineered microbial cell.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.